RNA-RNA Interactomes of ProQ and Hfq Reveal Overlapping and Competing Roles.

Sahar Melamed, Philip P Adams, Aixia Zhang, Hongen Zhang, Gisela Storz
Author Information
  1. Sahar Melamed: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA. Electronic address: sahar.melamed@nih.gov.
  2. Philip P Adams: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
  3. Aixia Zhang: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
  4. Hongen Zhang: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA.
  5. Gisela Storz: Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-5430, USA. Electronic address: storzg@mail.nih.gov.

Abstract

Base pairing RNAs modulate gene expression in all studied organisms. In many bacteria, the base pairing between most small regulatory RNAs (sRNAs) and their targets is mediated by the Hfq RNA chaperone. However, recent studies have shown FinO-domain proteins also bind sRNAs. To examine the global contribution of the FinO-domain ProQ protein in Escherichia coli, we carried out RIL-seq to identify RNA pairs bound to this protein. The RNA-RNA interactome for ProQ contains hundreds of pairs. Intriguingly, a significant fraction of the ProQ-bound RNA pairs are also found associated with Hfq, indicating overlapping, complementary, or competing roles for the two proteins. Characterization of one novel RNA pair bound by both chaperones revealed that while Hfq is required for RNA sponge-mediated downregulation of the sRNA, ProQ can inhibit this regulation. Overall, our results uncover increased complexity in RNA regulatory networks involving RNA chaperone proteins, RNases, sRNAs, and mRNAs.

Keywords

References

  1. Mol Microbiol. 2006 Jan;59(1):231-47 [PMID: 16359331]
  2. J Bacteriol. 2015 Jan 1;197(1):18-28 [PMID: 25266388]
  3. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  4. Curr Opin Microbiol. 2017 Oct;39:152-160 [PMID: 29179042]
  5. Mol Cell. 2018 Jun 7;70(5):971-982.e6 [PMID: 29804828]
  6. Genes Dev. 2003 Oct 1;17(19):2374-83 [PMID: 12975324]
  7. Proc Natl Acad Sci U S A. 2019 Jan 15;116(3):1043-1052 [PMID: 30591570]
  8. Mol Microbiol. 2019 Jan;111(1):131-144 [PMID: 30276893]
  9. J Bacteriol. 2007 Jun;189(11):4243-56 [PMID: 17416652]
  10. Nucleic Acids Res. 2017 Jan 25;45(2):775-792 [PMID: 27913725]
  11. Cell. 2014 Mar 27;157(1):77-94 [PMID: 24679528]
  12. Mol Microbiol. 2009 Dec;74(6):1314-30 [PMID: 19889087]
  13. J Bacteriol. 1989 Feb;171(2):947-51 [PMID: 2536686]
  14. EMBO J. 2017 Apr 13;36(8):1029-1045 [PMID: 28336682]
  15. J Bacteriol. 2014 Mar;196(6):1286-96 [PMID: 24443528]
  16. Nat Protoc. 2018 Jan;13(1):1-33 [PMID: 29215635]
  17. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12875-80 [PMID: 21768388]
  18. Proc Natl Acad Sci U S A. 2016 Oct 11;113(41):11591-11596 [PMID: 27671629]
  19. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20435-40 [PMID: 21059903]
  20. Proc Natl Acad Sci U S A. 2001 Dec 18;98(26):15264-9 [PMID: 11742086]
  21. Mol Cell. 2018 Jun 7;70(5):785-799 [PMID: 29358079]
  22. Algorithms Mol Biol. 2011 Nov 24;6:26 [PMID: 22115189]
  23. Nat Protoc. 2009;4(1):37-43 [PMID: 19131955]
  24. Microbiol Spectr. 2018 Jul;6(4): [PMID: 30051798]
  25. BMC Bioinformatics. 2013 Aug 10;14:244 [PMID: 23937229]
  26. Mol Syst Biol. 2006;2:2006.0008 [PMID: 16738554]
  27. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5836-40 [PMID: 366604]
  28. Nat Methods. 2015 Apr;12(4):323-5 [PMID: 25730492]
  29. Genes Dev. 2009 Sep 1;23(17):2004-15 [PMID: 19638370]
  30. Adv Genet. 2015;90:133-208 [PMID: 26296935]
  31. Nucleic Acids Res. 2013 Jan;41(Database issue):D605-12 [PMID: 23143106]
  32. EMBO J. 2019 Apr 1;38(7): [PMID: 30833291]
  33. Proc Natl Acad Sci U S A. 2000 May 23;97(11):5978-83 [PMID: 10811905]
  34. J Bacteriol. 1999 Mar;181(5):1537-43 [PMID: 10049386]
  35. Biochemistry. 2011 Apr 19;50(15):3095-106 [PMID: 21381725]
  36. Mol Microbiol. 2017 Jun;104(6):905-915 [PMID: 28370625]
  37. Curr Opin Microbiol. 2016 Apr;30:133-138 [PMID: 26907610]
  38. J Bacteriol. 2010 Jan;192(1):59-67 [PMID: 19734312]
  39. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8813-8 [PMID: 27432973]
  40. Mol Microbiol. 2003 Nov;50(4):1111-24 [PMID: 14622403]
  41. Mol Cell. 2016 Sep 1;63(5):884-97 [PMID: 27588604]
  42. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6640-5 [PMID: 10829079]
  43. Mol Microbiol. 2009 May;72(3):566-77 [PMID: 19400782]
  44. mBio. 2019 Mar 5;10(2): [PMID: 30837344]
  45. PLoS Genet. 2008 Aug 22;4(8):e1000163 [PMID: 18725932]
  46. Gene. 1995 May 26;158(1):9-14 [PMID: 7789817]
  47. Mol Microbiol. 2006 Dec;62(6):1674-88 [PMID: 17427289]
  48. Mol Microbiol. 2012 May;84(3):428-45 [PMID: 22458297]
  49. J Mol Biol. 2006 Nov 17;364(1):1-8 [PMID: 17007876]
  50. Nucleic Acids Res. 2019 Feb 28;47(4):2075-2088 [PMID: 30541135]
  51. mBio. 2019 Jan 2;10(1): [PMID: 30602583]
  52. EMBO J. 2015 Oct 14;34(20):2557-73 [PMID: 26373314]
  53. Curr Opin Microbiol. 2015 Apr;24:132-9 [PMID: 25677420]
  54. J Bacteriol. 1983 Nov;156(2):481-6 [PMID: 6355059]
  55. Arch Biochem Biophys. 1977 Dec;184(2):496-504 [PMID: 339843]
  56. Mol Microbiol. 1994 Nov;14(3):427-36 [PMID: 7533880]
  57. Mol Cell. 2019 May 2;74(3):481-493.e6 [PMID: 30904393]
  58. Methods Mol Biol. 2009;540:301-19 [PMID: 19381569]
  59. BMC Bioinformatics. 2011 Jan 26;12:35 [PMID: 21269502]
  60. Mol Cell. 2002 Jan;9(1):11-22 [PMID: 11804582]
  61. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  62. J Bacteriol. 1995 Jul;177(14):4121-30 [PMID: 7608087]

Grants

  1. ZIA HD001608-27/Intramural NIH HHS

MeSH Term

Base Pairing
DNA, Bacterial
Escherichia coli
Escherichia coli Proteins
Gene Expression Regulation, Bacterial
Host Factor 1 Protein
Molecular Chaperones
Protein Domains
RNA, Bacterial
RNA, Messenger
RNA, Small Untranslated
RNA-Binding Proteins

Chemicals

DNA, Bacterial
Escherichia coli Proteins
Hfq protein, E coli
Host Factor 1 Protein
Molecular Chaperones
ProQ protein, E coli
RNA, Bacterial
RNA, Messenger
RNA, Small Untranslated
RNA-Binding Proteins

Word Cloud

Created with Highcharts 10.0.0RNAHfqProQRNAssRNAschaperoneproteinspairspairingsmallregulatoryFinO-domainalsoproteinboundRNA-RNARNaseBasemodulategeneexpressionstudiedorganismsmanybacteriabasetargetsmediatedHoweverrecentstudiesshownbindexamineglobalcontributionEscherichiacolicarriedRIL-seqidentifyinteractomecontainshundredsIntriguinglysignificantfractionProQ-boundfoundassociatedindicatingoverlappingcomplementarycompetingrolestwoCharacterizationonenovelpairchaperonesrevealedrequiredsponge-mediateddownregulationsRNAcaninhibitregulationOverallresultsuncoverincreasedcomplexitynetworksinvolvingRNasesmRNAsInteractomesRevealOverlappingCompetingRolesspongeIIIIIRybBribose

Similar Articles

Cited By