Enzymatic Analysis of Reconstituted Archaeal Exosomes.

Elena Evguenieva-Hackenberg, A Susann Gauernack, Linlin Hou, Gabriele Klug
Author Information
  1. Elena Evguenieva-Hackenberg: Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany. Elena.Evguenieva-Hackenberg@mikro.bio.uni-giessen.de.
  2. A Susann Gauernack: Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany.
  3. Linlin Hou: Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany.
  4. Gabriele Klug: Institute for Microbiology and Molecular Biology, Justus-Liebig-University Giessen, Giessen, Germany. Gabriele.Klug@mikro.bio.uni-giessen.de.

Abstract

The archaeal exosome is a protein complex with phosphorolytic activity. It is built of a catalytically active hexameric ring containing the archaeal Rrp41 and Rrp42 proteins, and a heteromeric RNA-binding platform. The platform contains a heterotrimer of the archaeal Rrp4 and Csl4 proteins (which harbor S1 and KH or Zn-ribbon RNA binding domains), and comprises additional archaea-specific subunits. The latter are represented by the archaeal DnaG protein, which harbors a novel RNA-binding domain and tightly interacts with the majority of the exosome isoforms, and Nop5, known as a part of an rRNA methylating complex and found to associate with the archaeal exosome at late stationary phase. Although in the cell the archaeal exosome exists in different isoforms with heterotrimeric Rrp4-Csl4-caps, in vitro it is possible to reconstitute complexes with defined, homotrimeric caps and to study the impact of each RNA-binding subunit on exoribonucleolytic degradation and on polynucleotidylation of RNA. Here we describe procedures for reconstitution of isoforms of the Sulfolobus solfataricus exosome and for set-up of RNA degradation and polyadenylation assays.

Keywords

References

  1. Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D (1997) The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases. Cell 91:457–466 [DOI: 10.1016/S0092-8674(00)80432-8]
  2. Allmang C et al (1999) Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18:5399–5410 [DOI: 10.1093/emboj/18.19.5399]
  3. Houseley J, LaCava J, Tollervey D (2006) RNA-quality control by the exosome. Nat Rev Mol Cell Biol 7:529–539 [DOI: 10.1038/nrm1964]
  4. Liu Q, Greimann JC, Lima CD (2006) Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127:1223–1237; Erratum in: Cell (2007) 131:188–189 [DOI: 10.1016/j.cell.2006.10.037]
  5. Dziembowski A, Lorentzen E, Conti E, Séraphin B (2007) A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14:15–22 [DOI: 10.1038/nsmb1184]
  6. Schaeffer D et al (2009) The exosome contains domains with specific endoribonuclease, exoribonuclease and cytoplasmic mRNA decay activities. Nat Struct Mol Biol 16:56–62 [DOI: 10.1038/nsmb.1528]
  7. Koonin EV, Wolf YI, Aravind L (2001) Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res 11:240–252 [DOI: 10.1101/gr.162001]
  8. Evguenieva-Hackenberg E, Hou L, Glaeser S, Klug G (2014) Structure and function of the archaeal exosome. Wiley Interdiscip Rev RNA 5:623–635 [DOI: 10.1002/wrna.1234]
  9. Evguenieva-Hackenberg E, Walter P, Hochleitner E, Lottspeich F, Klug G (2003) An exosome-like complex in Sulfolobus solfataricus. EMBO Rep 4:889–893 [DOI: 10.1038/sj.embor.embor929]
  10. Lorentzen E et al (2005) The archaeal exosome core is a hexameric ring structure with three catalytic subunits. Nat Struct Mol Biol 12:575–581 [DOI: 10.1038/nsmb952]
  11. Büttner K, Wenig K, Hopfner KP (2005) Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20:461–471 [DOI: 10.1016/j.molcel.2005.10.018]
  12. Walter P et al (2006) Characterization of native and reconstituted exosome complexes from the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Microbiol 62:1076–1089 [DOI: 10.1111/j.1365-2958.2006.05393.x]
  13. Witharana C, Roppelt V, Lochnit G, Klug G, Evguenieva-Hackenberg E (2012) Heterogeneous complexes of the RNA exosome in Sulfolobus solfataricus. Biochimie 94:1578–1587 [DOI: 10.1016/j.biochi.2012.03.026]
  14. Ramos CR, Oliveira CL, Torriani IL, Oliveira CC (2006) The Pyrococcus exosome complex: structural and functional characterization. J Biol Chem 281:6751–6759 [DOI: 10.1074/jbc.M512495200]
  15. Navarro MV, Oliveira CC, Zanchin NI, Guimarães BG (2008) Insights into the mechanism of progressive RNA degradation by the archaeal exosome. J Biol Chem 283:14120–14131 [DOI: 10.1074/jbc.M801005200]
  16. Audin MJ, Wurm JP, Cvetkovic MA, Sprangers R (2016) The oligomeric architecture of the archaeal exosome is important for processive and efficient RNA degradation. Nucleic Acids Res 44:2962–2973 [DOI: 10.1093/nar/gkw062]
  17. Lorentzen E, Dziembowski A, Lindner D, Seraphin B, Conti E (2007) RNA channelling by the archaeal exosome. EMBO Rep 8:470–476 [DOI: 10.1038/sj.embor.7400945]
  18. Evguenieva-Hackenberg E, Roppelt V, Finsterseifer P, Klug G (2008) Rrp4 and Csl4 are needed for efficient degradation but not for polyadenylation of synthetic and natural RNA by the archaeal exosome. Biochemistry 47:13158–13168 [DOI: 10.1021/bi8012214]
  19. Luz JS et al (2010) Identification of archaeal proteins that affect the exosome function in vitro. BMC Biochem 11:22 [DOI: 10.1186/1471-2091-11-22]
  20. Lu C, Ding F, Ke A (2010) Crystal structure of the S. solfataricus archaeal exosome reveals conformational flexibility in the RNA-binding ring. PLoS One 5:e8739 [DOI: 10.1371/journal.pone.0008739]
  21. Cvetkovic MA, Wurm JP, Audin MJ, Schütz S, Sprangers R (2017) The Rrp4-exosome complex recruits and channels substrate RNA by a unique mechanism. Nat Chem Biol 13:522–528 [DOI: 10.1038/nchembio.2328]
  22. Roppelt V, Klug G, Evguenieva-Hackenberg E (2010) The evolutionarily conserved subunits Rrp4 and Csl4 confer different substrate specificities to the archaeal exosome. FEBS Lett 584:2931–2936 [DOI: 10.1016/j.febslet.2010.05.014]
  23. Hou L, Klug G, Evguenieva-Hackenberg E (2013) The archaeal DnaG protein needs Csl4 for binding to the exosome and enhances its interaction with adenine-rich RNAs. RNA Biol 10:415–424 [DOI: 10.4161/rna.23450]
  24. Hou L, Klug G, Evguenieva-Hackenberg E (2014) Archaeal DnaG contains a conserved N-terminal RNA-binding domain and enables tailing of rRNA by the exosome. Nucleic Acids Res 42:12691–12706 [DOI: 10.1093/nar/gku969]
  25. Märtens B et al (2017) The SmAP1/2 proteins of the crenarchaeon Sulfolobus solfataricus interact with the exosome and stimulate A-rich tailing of transcripts. Nucleic Acids Res 45:7938–7949 [DOI: 10.1093/nar/gkx437]
  26. Gauernack AS et al (2017) Nop5 interacts with the archaeal RNA exosome. FEBS Lett 591:4039–4048 [DOI: 10.1002/1873-3468.12915]
  27. Portnoy V et al (2005) RNA polyadenylation in archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. EMBO Rep 6:1188–1193 [DOI: 10.1038/sj.embor.7400571]
  28. Portnoy V, Schuster G (2006) RNA polyadenylation and degradation in different Archaea; roles of the exosome and RNase R. Nucleic Acids Res 34:5923–5931 [DOI: 10.1093/nar/gkl763]
  29. Slomovic S, Portnoy V, Yehudai-Resheff S, Bronshtein E, Schuster G (2008) Polynucleotide phosphorylase and the archaeal exosome as poly(A)-polymerases. Biochim Biophys Acta 1779:247–1755 [DOI: 10.1016/j.bbagrm.2007.12.004]
  30. Mohanty BK, Kushner SR (2000) Polynucleotide phosphorylase functions both as a 3′ right-arrow 5′ exonuclease and a poly(A) polymerase in Escherichia coli. Proc Natl Acad Sci U S A 97:11966–11971 [DOI: 10.1073/pnas.220295997]
  31. Andrade JM, Hajnsdorf E, Régnier P, Arraiano CM (2009) The poly(A)-dependent degradation pathway of rpsO mRNA is primarily mediated by RNase R. RNA 15:316–326 [DOI: 10.1261/rna.1197309]
  32. Mohanty BK, Kushner SR (2011) Bacterial/archaeal/organellar polyadenylation. Wiley Interdiscip Rev 2:256–276 [DOI: 10.1002/wrna.51]
  33. Lorentzen E, Conti E (2008) Expression, reconstitution, and structure of an archaeal RNA degrading exosome. Methods Enzymol 447:417–435 [DOI: 10.1016/S0076-6879(08)02220-9]
  34. Zuo Z, Rodgers CJ, Mikheikin AL, Trakselis MA (2010) Characterization of a functional DnaG-type primase in archaea: implications for a dual-primase system. J Mol Biol 397:664–676 [DOI: 10.1016/j.jmb.2010.01.057]
  35. Evguenieva-Hackenberg E, Wagner S, Klug G (2008) In vivo and in vitro studies of RNA degrading activities in Archaea. Methods Enzymol 447:381–416 [DOI: 10.1016/S0076-6879(08)02219-2]
  36. Roppelt V (2011) Die Untersuchung der physiologischen Rolle der Exosom-Untereinheiten Rrp4, Csl4 und DnaG aus Sulfolobus solfataricus. Dissertation, University of Giessen, Germany

MeSH Term

Archaeal Proteins
DNA Primase
Escherichia coli
Exosomes
Polyadenylation
RNA
RNA Stability
RNA, Archaeal
RNA-Binding Proteins
Sulfolobus solfataricus

Chemicals

Archaeal Proteins
RNA, Archaeal
RNA-Binding Proteins
RNA
DNA Primase

Word Cloud

Created with Highcharts 10.0.0archaealexosomeRNARNA-bindingproteincomplexisoformsdegradationproteinsplatformvitroreconstitutionSulfolobuspolyadenylationArchaealphosphorolyticactivitybuiltcatalyticallyactivehexamericringcontainingRrp41Rrp42heteromericcontainsheterotrimerRrp4Csl4harborS1KHZn-ribbonbindingdomainscomprisesadditionalarchaea-specificsubunitslatterrepresentedDnaGharborsnoveldomaintightlyinteractsmajorityNop5knownpartrRNAmethylatingfoundassociatelatestationaryphaseAlthoughcellexistsdifferentheterotrimericRrp4-Csl4-capspossiblereconstitutecomplexesdefinedhomotrimericcapsstudyimpactsubunitexoribonucleolyticpolynucleotidylationdescribeproceduressolfataricusset-upassaysEnzymaticAnalysisReconstitutedExosomesComplextranscriptionProtein

Similar Articles

Cited By