Evolutionary dynamics with game transitions.

Qi Su, Alex McAvoy, Long Wang, Martin A Nowak
Author Information
  1. Qi Su: Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China.
  2. Alex McAvoy: Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138; alexmcavoy@fas.harvard.edu longwang@pku.edu.cn martin_nowak@harvard.edu. ORCID
  3. Long Wang: Center for Systems and Control, College of Engineering, Peking University, Beijing 100871, China; alexmcavoy@fas.harvard.edu longwang@pku.edu.cn martin_nowak@harvard.edu.
  4. Martin A Nowak: Program for Evolutionary Dynamics, Harvard University, Cambridge, MA 02138; alexmcavoy@fas.harvard.edu longwang@pku.edu.cn martin_nowak@harvard.edu. ORCID

Abstract

The environment has a strong influence on a population's evolutionary dynamics. Driven by both intrinsic and external factors, the environment is subject to continual change in nature. To capture an ever-changing environment, we consider a model of evolutionary dynamics with game transitions, where individuals' behaviors together with the games that they play in one time step influence the games to be played in the next time step. Within this model, we study the evolution of cooperation in structured populations and find a simple rule: Weak selection favors cooperation over defection if the ratio of the benefit provided by an altruistic behavior, b, to the corresponding cost, c, exceeds [Formula: see text], where k is the average number of neighbors of an individual and [Formula: see text] captures the effects of the game transitions. Even if cooperation cannot be favored in each individual game, allowing for a transition to a relatively valuable game after mutual cooperation and to a less valuable game after defection can result in a favorable outcome for cooperation. In particular, small variations in different games being played can promote cooperation markedly. Our results suggest that simple game transitions can serve as a mechanism for supporting prosocial behaviors in highly connected populations.

Keywords

References

  1. PLoS One. 2015 Sep 01;10(9):e0136497 [PMID: 26325289]
  2. Nature. 1998 Jun 4;393(6684):440-2 [PMID: 9623998]
  3. Phys Rev Lett. 2013 Dec 6;111(23):238101 [PMID: 24476306]
  4. PLoS Comput Biol. 2019 Apr 1;15(4):e1006947 [PMID: 30933968]
  5. Nat Commun. 2020 Feb 14;11(1):915 [PMID: 32060275]
  6. Nature. 2004 Apr 8;428(6983):646-50 [PMID: 15071593]
  7. Science. 1999 Oct 15;286(5439):509-12 [PMID: 10521342]
  8. Proc Biol Sci. 2006 Oct 7;273(1600):2565-70 [PMID: 16959650]
  9. J Theor Biol. 2012 Apr 21;299:97-105 [PMID: 21473871]
  10. Nature. 2007 May 24;447(7143):469-72 [PMID: 17522682]
  11. J Theor Biol. 2019 Feb 7;462:347-360 [PMID: 30471298]
  12. Nature. 2006 May 25;441(7092):502-5 [PMID: 16724065]
  13. Proc Biol Sci. 2019 Apr 10;286(1900):20190041 [PMID: 30940065]
  14. J Theor Biol. 2007 Jun 7;246(3):522-9 [PMID: 17292423]
  15. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Oct;82(4 Pt 2):046106 [PMID: 21230344]
  16. J Theor Biol. 2000 Jun 21;204(4):481-96 [PMID: 10833350]
  17. Nature. 2017 Apr 13;544(7649):227-230 [PMID: 28355181]
  18. J Theor Biol. 2009 Aug 7;259(3):570-81 [PMID: 19358858]
  19. PLoS Comput Biol. 2013;9(12):e1003381 [PMID: 24339769]
  20. Theor Popul Biol. 2016 Oct;111:28-42 [PMID: 27256794]
  21. J Theor Biol. 1991 Mar 7;149(1):63-74 [PMID: 1881147]
  22. Nature. 2018 Jul;559(7713):246-249 [PMID: 29973718]
  23. ISME J. 2013 Apr;7(4):781-90 [PMID: 23344242]
  24. Q Rev Biol. 2004 Jun;79(2):135-60 [PMID: 15232949]
  25. Science. 2006 Dec 8;314(5805):1560-3 [PMID: 17158317]
  26. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11149-52 [PMID: 11005838]
  27. Proc Natl Acad Sci U S A. 2016 Nov 22;113(47):E7518-E7525 [PMID: 27830651]
  28. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17093-8 [PMID: 25404308]
  29. PLoS Comput Biol. 2015 Aug 26;11(8):e1004349 [PMID: 26308326]
  30. J Theor Biol. 1964 Jul;7(1):17-52 [PMID: 5875340]
  31. Trends Ecol Evol. 2007 Dec;22(12):643-51 [PMID: 17981363]
  32. J R Soc Interface. 2014 Nov 6;11(100):20140663 [PMID: 25165604]
  33. J Theor Biol. 1964 Jul;7(1):1-16 [PMID: 5875341]
  34. Proc Natl Acad Sci U S A. 2014 Jul 22;111 Suppl 3:10838-45 [PMID: 25024192]
  35. Proc Natl Acad Sci U S A. 2014 Dec 9;111(49):17558-63 [PMID: 25422421]
  36. Nat Genet. 2008 Apr;40(4):471-5 [PMID: 18362885]
  37. Proc Natl Acad Sci U S A. 2013 Feb 26;110(9):3229-36 [PMID: 23391737]

MeSH Term

Biological Evolution
Cooperative Behavior
Environment
Game Theory
Models, Biological
Population Dynamics

Word Cloud

Created with Highcharts 10.0.0gamecooperationtransitionsenvironmentevolutionarydynamicsgamespopulationscaninfluencemodelbehaviorstimestepplayedstructuredsimpledefection[Formula:seetext]individualvaluablestrongpopulation'sDrivenintrinsicexternalfactorssubjectcontinualchangenaturecaptureever-changingconsiderindividuals'togetherplayonenextWithinstudyevolutionfindrule:WeakselectionfavorsratiobenefitprovidedaltruisticbehaviorbcorrespondingcostcexceedskaveragenumberneighborscaptureseffectsEvenfavoredallowingtransitionrelativelymutuallessresultfavorableoutcomeparticularsmallvariationsdifferentpromotemarkedlyresultssuggestservemechanismsupportingprosocialhighlyconnectedEvolutionarytheory

Similar Articles

Cited By (19)