Analysis of polarimetric satellite measurements suggests stronger cooling due to aerosol-cloud interactions.

Otto P Hasekamp, Edward Gryspeerdt, Johannes Quaas
Author Information
  1. Otto P Hasekamp: SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands. O.Hasekamp@sron.nl. ORCID
  2. Edward Gryspeerdt: Space and Atmospheric Physics Group, Imperial College London, London, SW7 2AZ, UK. ORCID
  3. Johannes Quaas: Universität Leipzig, Institute for Meteorology, Stephanstr. 3, D-04103, Leipzig, Germany. ORCID

Abstract

Anthropogenic aerosol emissions lead to an increase in the amount of cloud condensation nuclei and consequently an increase in cloud droplet number concentration and cloud albedo. The corresponding negative radiative forcing due to aerosol cloud interactions (RF[Formula: see text]) is one of the most uncertain radiative forcing terms as reported in the 5th Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Here we show that previous observation-based studies underestimate aerosol-cloud interactions because they used measurements of aerosol optical properties that are not directly related to cloud formation and are hampered by measurement uncertainties. We have overcome this problem by the use of new polarimetric satellite retrievals of the relevant aerosol properties (aerosol number, size, shape). The resulting estimate of RF[Formula: see text] = -1.14 Wm[Formula: see text] (range between -0.84 and -1.72 Wm[Formula: see text]) is more than a factor 2 stronger than the IPCC estimate that includes also other aerosol induced changes in cloud properties.

References

  1. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12753-8 [PMID: 9788985]
  2. Rev Geophys. 2020 Mar;58(1):e2019RG000660 [PMID: 32734279]
  3. Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13404-8 [PMID: 21808047]
  4. Science. 2006 Jun 2;312(5778):1323-4 [PMID: 16741104]
  5. Nat Commun. 2018 Jul 6;9(1):2640 [PMID: 29980669]
  6. Nature. 2019 Aug;572(7767):51-55 [PMID: 31367029]
  7. Science. 2002 Nov 1;298(5595):1012-5 [PMID: 12411701]
  8. Nature. 2005 Jun 30;435(7046):1187-90 [PMID: 15988515]
  9. Science. 2002 Feb 1;295(5556):834-8 [PMID: 11823636]
  10. Rev Geophys. 2018 Jun;56(2):409-453 [PMID: 30148283]
  11. Appl Opt. 2007 Aug 1;46(22):5435-51 [PMID: 17676160]
  12. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5781-90 [PMID: 27222566]
  13. IEEE Trans Geosci Remote Sens. 2017 Jan;55(1):502-525 [PMID: 29657349]
  14. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4899-4904 [PMID: 28446614]
  15. Science. 2006 Jun 2;312(5778):1375-8 [PMID: 16741120]
  16. Atmos Chem Phys. 2020 Jan;20(1):613-623 [PMID: 33204244]
  17. Proc Natl Acad Sci U S A. 2016 May 24;113(21):5804-11 [PMID: 26921324]

Word Cloud

Created with Highcharts 10.0.0aerosolcloudseetext]interactionspropertiesincreasenumberradiativeforcingdueRF[Formula:IPCCaerosol-cloudmeasurementspolarimetricsatelliteestimate-1Wm[Formula:strongerAnthropogenicemissionsleadamountcondensationnucleiconsequentlydropletconcentrationalbedocorrespondingnegativeoneuncertaintermsreported5thAssessmentReportIntergovernmentalPanelClimateChangeshowpreviousobservation-basedstudiesunderestimateusedopticaldirectlyrelatedformationhamperedmeasurementuncertaintiesovercomeproblemusenewretrievalsrelevantsizeshaperesulting=14range-08472factor2includesalsoinducedchangesAnalysissuggestscooling

Similar Articles

Cited By