Insights from invasion ecology: Can consideration of eco-evolutionary experience promote benefits from root mutualisms in plant production?

Josep Ramoneda, Johannes Le Roux, Emmanuel Frossard, Cecilia Bester, Noel Oettl��, Beat Frey, Hannes Andres Gamper
Author Information
  1. Josep Ramoneda: Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland.
  2. Johannes Le Roux: Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia.
  3. Emmanuel Frossard: Group of Plant Nutrition, Department of Environmental Systems Science, ETH Zurich, Lindau, Switzerland.
  4. Cecilia Bester: South African Agricultural Research Council (ARC-Infruitec), Nieuwoudtville Northern Cape, Stellenbosch Central, Stellenbosch, South Africa.
  5. Noel Oettl��: Environmental Monitoring Group (EMG), Nieuwoudtville Northern Cape, South Africa.
  6. Beat Frey: Rhizosphere Processes Group, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland.
  7. Hannes Andres Gamper: Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.

Abstract

Mutualistic plant-microbial functioning relies on co-adapted symbiotic partners as well as conducive environmental conditions. Choosing particular plant genotypes for domestication and subsequent cultivar selection can narrow the gene pools of crop plants to a degree that they are no longer able to benefit from microbial mutualists. Elevated mineral nutrient levels in cultivated soils also reduce the dependence of crops on nutritional support by mutualists such as mycorrhizal fungi and rhizobia. Thus, current ways of crop production are predestined to compromise the propagation and function of microbial symbionts, limiting their long-term benefits for plant yield stability. The influence of mutualists on non-native plant establishment and spread, i.e. biological invasions, provides an unexplored analogue to contemporary crop production that accounts for mutualistic services from symbionts like rhizobia and mycorrhizae. The historical exposure of organisms to biotic interactions over evolutionary timescales, or so-called eco-evolutionary experience (EEE), has been used to explain the success of such invasions. In this paper, we stress that consideration of the EEE concept can shed light on how to overcome the loss of microbial mutualist functions following crop domestication and breeding. We propose specific experimental approaches to utilize the wild ancestors of crops to determine whether crop domestication compromised the benefits derived from root microbial symbioses or not. This can predict the potential for success of mutualistic symbiosis manipulation in modern crops and the maintenance of effective microbial mutualisms over the long term.

Keywords

References

  1. Proc Biol Sci. 2007 Dec 22;274(1629):3119-26 [PMID: 17939985]
  2. Oecologia. 2005 Jun;144(1):1-11 [PMID: 15891837]
  3. Evolution. 2015 Mar;69(3):631-42 [PMID: 25565449]
  4. AoB Plants. 2016 Sep 11;8: [PMID: 27535176]
  5. New Phytol. 2018 Feb;217(3):1254-1266 [PMID: 29034978]
  6. Ecol Lett. 2009 Jan;12(1):13-21 [PMID: 19019195]
  7. Curr Opin Plant Biol. 2018 Aug;44:7-15 [PMID: 29289792]
  8. New Phytol. 2009 Mar;181(4):960-973 [PMID: 19170899]
  9. Trends Ecol Evol. 2018 Feb;33(2):129-142 [PMID: 29241940]
  10. Nature. 2003 Sep 4;425(6953):78-81 [PMID: 12955144]
  11. New Phytol. 2017 Sep;215(4):1354-1360 [PMID: 28771816]
  12. Nat Commun. 2017 Apr 07;8:14790 [PMID: 28387250]
  13. PLoS Genet. 2014 Jul 17;10(7):e1004487 [PMID: 25032823]
  14. Genes (Basel). 2017 Dec 22;9(1): [PMID: 29271943]
  15. Ecol Lett. 2015 Mar;18(3):236-45 [PMID: 25626585]
  16. Trends Plant Sci. 2017 Jul;22(7):583-595 [PMID: 28549621]
  17. Nat Biotechnol. 2018 Oct 01;: [PMID: 30272678]
  18. AoB Plants. 2016 Jul 11;8: [PMID: 27255514]
  19. PLoS One. 2011;6(12):e27935 [PMID: 22174755]
  20. Nat Ecol Evol. 2019 Apr;3(4):604-611 [PMID: 30911144]
  21. Oecologia. 2012 Sep;170(1):253-61 [PMID: 22419481]
  22. Interface Focus. 2017 Oct 6;7(5):20170001 [PMID: 28839925]
  23. Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14058-62 [PMID: 22891306]
  24. Biol Rev Camb Philos Soc. 2000 Feb;75(1):65-93 [PMID: 10740893]
  25. Nat Plants. 2018 May;4(5):247-257 [PMID: 29725101]
  26. Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16666-71 [PMID: 17068128]
  27. Nat Commun. 2018 Feb 13;9(1):649 [PMID: 29440741]
  28. New Phytol. 2017 Apr;214(1):412-423 [PMID: 27879004]
  29. Curr Biol. 2011 Sep 27;21(18):R775-85 [PMID: 21959168]
  30. Front Plant Sci. 2016 Oct 27;7:1625 [PMID: 27833637]
  31. ISME J. 2015 May;9(5):1053-61 [PMID: 25350159]
  32. Ecol Lett. 2006 May;9(5):501-15 [PMID: 16643296]
  33. Mycorrhiza. 2007 Sep;17(6):507-517 [PMID: 17356853]
  34. Front Plant Sci. 2015 Jul 14;6:507 [PMID: 26236319]
  35. New Phytol. 2017 Sep;215(4):1314-1332 [PMID: 28649741]
  36. Mol Ecol. 2008 Jan;17(1):431-49 [PMID: 17908213]
  37. Nat Plants. 2018 Aug;4(8):512-520 [PMID: 30061748]
  38. New Phytol. 2010 Jul;187(2):475-484 [PMID: 20456067]
  39. New Phytol. 2018 Dec;220(4):1135-1140 [PMID: 29658105]
  40. PLoS Biol. 2017 Mar 28;15(3):e2001793 [PMID: 28350798]
  41. New Phytol. 2019 Jan;221(1):577-587 [PMID: 30067296]
  42. Front Plant Sci. 2014 Sep 29;5:501 [PMID: 25324851]
  43. New Phytol. 2019 Apr;222(2):645-647 [PMID: 30895649]
  44. Mycorrhiza. 2019 Jan;29(1):39-49 [PMID: 30443805]
  45. Microbiome. 2018 Aug 16;6(1):143 [PMID: 30115122]
  46. New Phytol. 2019 Apr;222(1):91-96 [PMID: 30451287]
  47. Front Plant Sci. 2016 Mar 30;7:373 [PMID: 27066028]
  48. Mol Ecol. 2012 Aug;21(16):4122-36 [PMID: 22703050]
  49. Cell. 2006 Dec 29;127(7):1309-21 [PMID: 17190597]
  50. New Phytol. 2017 Jul;215(1):40-56 [PMID: 28211601]
  51. Appl Environ Microbiol. 2004 Oct;70(10):5980-7 [PMID: 15466541]
  52. Evol Appl. 2010 Sep;3(5-6):547-60 [PMID: 25567946]
  53. New Phytol. 2018 Apr;218(1):322-334 [PMID: 29281758]

Word Cloud

Created with Highcharts 10.0.0cropplantmicrobialdomesticationcanmutualistscropsbenefitsinvasionsrootrhizobiaproductionsymbiontsbiologicalmutualisticinteractionseco-evolutionaryexperienceEEEsuccessconsiderationbreedingwildmutualismsMutualisticplant-microbialfunctioningreliesco-adaptedsymbioticpartnerswellconduciveenvironmentalconditionsChoosingparticulargenotypessubsequentcultivarselectionnarrowgenepoolsplantsdegreelongerablebenefitElevatedmineralnutrientlevelscultivatedsoilsalsoreducedependencenutritionalsupportmycorrhizalfungiThuscurrentwayspredestinedcompromisepropagationfunctionlimitinglong-termyieldstabilityinfluencenon-nativeestablishmentspreadieprovidesunexploredanaloguecontemporaryaccountsserviceslikemycorrhizaehistoricalexposureorganismsbioticevolutionarytimescalesso-calledusedexplainpaperstressconceptshedlightovercomelossmutualistfunctionsfollowingproposespecificexperimentalapproachesutilizeancestorsdeterminewhethercompromisedderivedsymbiosespredictpotentialsymbiosismanipulationmodernmaintenanceeffectivelongtermInsightsinvasionecology:Canpromoteproduction?Adaptationco-introductionrelativeecologicalfittingplant���microberangeexpansionmicrobiomes

Similar Articles

Cited By