Maximize Resolution or Minimize Error? Using Genotyping-By-Sequencing to Investigate the Recent Diversification of (Cistaceae).

Sara Martín-Hernanz, Abelardo Aparicio, Mario Fernández-Mazuecos, Encarnación Rubio, J Alfredo Reyes-Betancort, Arnoldo Santos-Guerra, María Olangua-Corral, Rafael G Albaladejo
Author Information
  1. Sara Martín-Hernanz: Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
  2. Abelardo Aparicio: Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
  3. Mario Fernández-Mazuecos: Departamento de Biodiversidad y Conservación, Real Jardín Botánico (RJB-CSIC), Madrid, Spain.
  4. Encarnación Rubio: Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.
  5. J Alfredo Reyes-Betancort: Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain.
  6. Arnoldo Santos-Guerra: Jardín de Aclimatación de la Orotava, Instituto Canario de Investigaciones Agrarias (ICIA), Santa Cruz de Tenerife, Spain.
  7. María Olangua-Corral: Departamento de Biología Reproductiva y Micro-morfología, Jardín Botánico Canario 'Viera y Clavijo'-Unidad Asociada CSIC (Cabildo de Gran Canaria), Las Palmas de Gran Canaria, Spain.
  8. Rafael G Albaladejo: Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Sevilla, Spain.

Abstract

A robust phylogenetic framework, in terms of extensive geographical and taxonomic sampling, well-resolved species relationships and high certainty of tree topologies and branch length estimations, is critical in the study of macroevolutionary patterns. Whereas Sanger sequencing-based methods usually recover insufficient phylogenetic signal, especially in recently diversified lineages, reduced-representation sequencing methods tend to provide well-supported phylogenetic relationships, but usually entail remarkable bioinformatic challenges due to the inherent trade-off between the number of SNPs and the magnitude of associated error rates. The genus (Cistaceae) is a species-rich and taxonomically complex Palearctic group of plants that diversified mainly since the Upper Miocene. It is a challenging case study since previous attempts using Sanger sequencing were unable to resolve the intrageneric phylogenetic relationships. Aiming to obtain a robust phylogenetic reconstruction based on genotyping-by-sequencing (GBS), we established a rigorous methodological workflow in which we i) explored how variable settings during dataset assembly have an impact on error rates and on the degree of resolution under concatenation and coalescent approaches, ii) assessed the effect of two extreme parameter configurations (minimizing error rates vs. maximizing phylogenetic resolution) on tree topology and branch lengths, and iii) evaluated the effects of these two configurations on estimates of divergence times and diversification rates. Our analyses produced highly supported topologically congruent phylogenetic trees for both configurations. However, minimizing error rates did produce more reliable branch lengths, critically affecting the accuracy of downstream analyses (i.e. divergence times and diversification rates). In addition to recommending a revision of intrageneric systematics, our results enabled us to identify three highly diversified lineages in in contrasting geographical areas and ecological conditions, which started radiating in the Upper Miocene.

Keywords

References

  1. BMC Bioinformatics. 2012 Jul 30;13:185 [PMID: 22846331]
  2. New Phytol. 2013 Apr;198(2):579-592 [PMID: 23379348]
  3. Genome Res. 1998 Mar;8(3):186-94 [PMID: 9521922]
  4. Bioinformatics. 2014 Mar 1;30(5):614-20 [PMID: 24142950]
  5. Genome Biol. 2007;8(6):R105 [PMID: 17553171]
  6. Mol Biol Evol. 2002 Jan;19(1):101-9 [PMID: 11752195]
  7. Bioinformatics. 2014 Dec 1;30(23):3317-24 [PMID: 25104814]
  8. Evolution. 2001 Sep;55(9):1762-80 [PMID: 11681732]
  9. Mol Ecol. 2011 Sep;20(17):3499-502 [PMID: 21991593]
  10. Mol Phylogenet Evol. 2014 Jan;70:112-9 [PMID: 24060367]
  11. Nat Commun. 2013;4:1958 [PMID: 23739623]
  12. Mol Biol Evol. 2008 Jan;25(1):199-206 [PMID: 17981928]
  13. Syst Biol. 2014 Jul;63(4):610-27 [PMID: 24682412]
  14. Mol Biol Evol. 2008 May;25(5):960-71 [PMID: 18281270]
  15. Mol Ecol. 2015 May;24(10):2392-405 [PMID: 25809206]
  16. New Phytol. 2015 Jul;207(2):249-253 [PMID: 26096199]
  17. Bioinformatics. 2003 Jan 22;19(2):301-2 [PMID: 12538260]
  18. Syst Biol. 2018 Sep 1;67(5):901-904 [PMID: 29718447]
  19. Mol Biol Evol. 2005 Jul;22(7):1561-8 [PMID: 15814826]
  20. Syst Biol. 2011 Jan;60(1):74-86 [PMID: 21081482]
  21. Proc Biol Sci. 2000 Nov 22;267(1459):2267-72 [PMID: 11413642]
  22. Evolution. 2015 Jun;69(6):1528-1545 [PMID: 25958922]
  23. New Phytol. 2015 Jul;207(2):377-389 [PMID: 25521237]
  24. Mol Ecol Resour. 2015 Jan;15(1):28-41 [PMID: 24916682]
  25. Mol Biol Evol. 2013 Jan;30(1):197-214 [PMID: 22930702]
  26. Syst Biol. 2012 Dec 1;61(6):1069-74 [PMID: 22442193]
  27. Ann Bot. 2010 Dec;106(6):871-84 [PMID: 20858592]
  28. PLoS Biol. 2006 May;4(5):e88 [PMID: 16683862]
  29. Plant Biol (Stuttg). 2018 Jan;20 Suppl 1:166-175 [PMID: 28295874]
  30. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  31. PLoS One. 2017 Jan 30;12(1):e0171053 [PMID: 28135342]
  32. Proc Biol Sci. 2010 May 22;277(1687):1489-96 [PMID: 20106850]
  33. PLoS One. 2012;7(2):e32253 [PMID: 22389690]
  34. Bioinformatics. 2016 May 1;32(9):1331-7 [PMID: 26733454]
  35. Syst Biol. 2007 Feb;56(1):17-24 [PMID: 17366134]
  36. Annu Rev Entomol. 2008;53:449-72 [PMID: 17877448]
  37. G3 (Bethesda). 2014 Nov 04;4(12):2545-52 [PMID: 25378476]
  38. Plant Biol (Stuttg). 2018 Jan;20 Suppl 1:157-165 [PMID: 28892240]
  39. Mol Phylogenet Evol. 2017 Jun;111:158-168 [PMID: 28390910]
  40. Syst Biol. 2012 May;61(3):443-60 [PMID: 22228799]
  41. PLoS One. 2009 Jul 23;4(7):e6362 [PMID: 19668338]
  42. Mol Phylogenet Evol. 2000 Jul;16(1):143-60 [PMID: 10877947]
  43. Bioinformatics. 2008 Jan 1;24(1):129-31 [PMID: 18006550]
  44. Mol Ecol. 2013 Jun;22(11):2986-3001 [PMID: 23551333]
  45. Syst Biol. 2015 Sep;64(5):727-40 [PMID: 25979143]
  46. Mol Biol Evol. 2014 Oct;31(10):2553-6 [PMID: 25135941]
  47. BMC Evol Biol. 2007 Nov 08;7:214 [PMID: 17996036]
  48. Mol Phylogenet Evol. 2016 Jul;100:70-79 [PMID: 26993764]
  49. Bioinformatics. 2010 Apr 1;26(7):962-3 [PMID: 20156990]
  50. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16122-7 [PMID: 12451181]
  51. Nat Rev Genet. 2016 Feb;17(2):81-92 [PMID: 26729255]
  52. Mol Phylogenet Evol. 2018 Jul;124:122-136 [PMID: 29530498]
  53. Nature. 2013 May 16;497(7449):327-31 [PMID: 23657258]
  54. Mol Phylogenet Evol. 2014 Nov;80:231-66 [PMID: 25152276]
  55. Am J Bot. 2016 May;103(5):912-22 [PMID: 27208359]
  56. PLoS One. 2013;8(1):e54603 [PMID: 23372741]
  57. Mol Phylogenet Evol. 2014 Nov;80:137-44 [PMID: 25108259]
  58. Ecol Evol. 2017 Aug 30;7(19):7920-7936 [PMID: 29043045]
  59. J Biogeogr. 2013 Oct 1;40(10):1874-1886 [PMID: 24790287]
  60. PLoS One. 2011;6(7):e22234 [PMID: 21779399]
  61. Syst Biol. 2009 Oct;58(5):527-36 [PMID: 20525606]
  62. Am J Bot. 2018 Mar;105(3):385-403 [PMID: 29746719]
  63. Mol Biol Evol. 2014 May;31(5):1261-71 [PMID: 24509691]
  64. Syst Biol. 2017 May 1;66(3):399-412 [PMID: 27798402]
  65. Bioinformatics. 2012 Oct 15;28(20):2689-90 [PMID: 22908216]
  66. Syst Biol. 2016 Jul;65(4):612-27 [PMID: 26865273]
  67. Syst Biol. 2018 Nov 1;67(6):925-939 [PMID: 29669013]
  68. Syst Biol. 2011 Oct;60(5):719-31 [PMID: 21447483]
  69. PLoS One. 2008;3(10):e3376 [PMID: 18852878]
  70. PLoS Genet. 2016 Mar 07;12(3):e1005896 [PMID: 26950302]
  71. Mol Biol Evol. 1992 Jul;9(4):744-52 [PMID: 1630310]
  72. Genome Biol Evol. 2015 Feb 07;7(3):706-19 [PMID: 25663487]
  73. Bioinformatics. 2006 Nov 1;22(21):2688-90 [PMID: 16928733]
  74. Mol Phylogenet Evol. 2009 Sep;52(3):563-74 [PMID: 19398027]
  75. PLoS One. 2014 Feb 26;9(2):e89543 [PMID: 24586858]
  76. Bioinformatics. 2014 Jul 1;30(13):1844-9 [PMID: 24603985]
  77. Ecol Evol. 2019 Mar 05;9(6):3016-3029 [PMID: 30962878]
  78. Mol Biol Evol. 1994 May;11(3):459-68 [PMID: 8015439]
  79. Syst Biol. 2011 Oct;60(5):661-7 [PMID: 21447481]
  80. Syst Biol. 2013 Mar;62(2):205-19 [PMID: 23103590]
  81. Bioinformatics. 2011 Feb 15;27(4):592-3 [PMID: 21169378]
  82. New Phytol. 2015 Jul;207(2):313-326 [PMID: 25690582]
  83. PLoS One. 2015 Oct 08;10(10):e0140175 [PMID: 26448557]
  84. Genome Res. 2010 Mar;20(3):291-300 [PMID: 20067940]
  85. PLoS One. 2012;7(6):e39089 [PMID: 22768061]
  86. Bioinformatics. 2004 Jan 22;20(2):289-90 [PMID: 14734327]
  87. PLoS One. 2012;7(4):e33394 [PMID: 22493668]
  88. Syst Biol. 2009 Feb;58(1):130-45 [PMID: 20525573]
  89. Trends Ecol Evol. 1996;11(1):15-20 [PMID: 21237745]
  90. Mol Ecol. 2013 Feb;22(3):814-26 [PMID: 22924870]
  91. Mol Biol Evol. 2012 Feb;29(2):457-72 [PMID: 21873298]
  92. J Exp Zool B Mol Dev Evol. 2005 Jan 15;304(1):64-74 [PMID: 15593277]
  93. Syst Biol. 2018 Mar 01;67(2):250-268 [PMID: 28973686]
  94. BMC Evol Biol. 2010 Jan 11;10:5 [PMID: 20064267]
  95. Mol Ecol. 2013 Feb;22(3):787-98 [PMID: 23057853]
  96. Cladistics. 2016 Dec;32(6):672-681 [PMID: 34727672]
  97. Mol Biol Evol. 2014 May;31(5):1272-4 [PMID: 24497030]

Word Cloud

Created with Highcharts 10.0.0phylogeneticratesbrancherrorrelationshipsdiversifiedresolutionconfigurationsdiversificationrobustgeographicaltreelengthstudySangermethodsusuallylineagessequencingCistaceaesinceUpperMioceneintragenericgenotyping-by-sequencingtwominimizinglengthsdivergencetimesanalyseshighlyframeworktermsextensivetaxonomicsamplingwell-resolvedspecieshighcertaintytopologiesestimationscriticalmacroevolutionarypatternsWhereassequencing-basedrecoverinsufficientsignalespeciallyrecentlyreduced-representationtendprovidewell-supportedentailremarkablebioinformaticchallengesdueinherenttrade-offnumberSNPsmagnitudeassociatedgenusspecies-richtaxonomicallycomplexPalearcticgroupplantsmainlychallengingcasepreviousattemptsusingunableresolveAimingobtainreconstructionbasedGBSestablishedrigorousmethodologicalworkflowexploredvariablesettingsdatasetassemblyimpactdegreeconcatenationcoalescentapproachesiiassessedeffectextremeparametervsmaximizingtopologyiiievaluatedeffectsestimatesproducedsupportedtopologicallycongruenttreesHoweverproducereliablecriticallyaffectingaccuracydownstreamieadditionrecommendingrevisionsystematicsresultsenabledusidentifythreecontrastingareasecologicalconditionsstartedradiatingMaximizeResolutionMinimizeError?UsingGenotyping-By-SequencingInvestigateRecentDiversificationHelianthemumevolutionaryradiationphylogenomics

Similar Articles

Cited By