A nomogram to predict vascular invasion before resection of colorectal cancer.

Weishun Xie, Jungang Liu, Xiaoliang Huang, Guo Wu, Franco Jeen, Shaomei Chen, Chuqiao Zhang, Wenkang Yang, Chan Li, Zhengtian Li, Lianying Ge, Weizhong Tang
Author Information
  1. Weishun Xie: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  2. Jungang Liu: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  3. Xiaoliang Huang: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  4. Guo Wu: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  5. Franco Jeen: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  6. Shaomei Chen: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  7. Chuqiao Zhang: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  8. Wenkang Yang: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  9. Chan Li: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  10. Zhengtian Li: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  11. Lianying Ge: Guangxi Clinical Research Center for Colorectal Cancer, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.
  12. Weizhong Tang: Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.

Abstract

Vascular invasion (VI) is an important feature for systemic recurrence and an indicator for the application of adjuvant therapy in colorectal cancer (CRC). Preoperative knowledge of VI is important in determining whether adjuvant therapy is necessary, as well as the adequacy of surgical resection. In the present study, a predictive nomogram for VI in patients with CRC was constructed. The prediction model consisted of 664 eligible patients with CRC, who were divided into a training set (n=468) and a validation set (n=196). Data were collected between August 2013 and April 2018. The feature selection model was established using the least absolute shrinkage and selection operator regression model. Multivariable logistic regression analysis was used to construct the predictive nomogram. The performance of the nomogram was evaluated by calibration, discrimination and clinical usefulness. Differentiation, computed tomography (CT)-based on N stage (CT N stage), hemameba and tumor distance from the anus (cm) were integrated into the nomogram. The nomogram exhibited good discrimination, with an area under the curve (AUC) of 0.731 and good calibration. Application of the nomogram in the validation cohort showed acceptable discrimination, with an AUC of 0.710 and good calibration. Decision curve analysis revealed that the nomogram was clinically useful. These findings suggests, to the best of our knowledge, that this may be the first nomogram for individual preoperative prediction of VI in patients with CRC, which may promote preoperative optimization strategies for this selected group of patients.

Keywords

References

  1. Int J Mol Sci. 2018 Jan 19;19(1): [PMID: 29351242]
  2. Dev Cell. 2010 Jun 15;18(6):884-901 [PMID: 20627072]
  3. J Am Coll Surg. 1998 May;186(5):574-9; discussion 579-80 [PMID: 9583699]
  4. Mol Cancer Ther. 2006 Aug;5(8):2070-7 [PMID: 16928828]
  5. Clin Appl Thromb Hemost. 2015 Mar;21(2):139-43 [PMID: 24770327]
  6. Colorectal Dis. 2013 Nov;15(11):e665-71 [PMID: 24103008]
  7. Cell. 2010 Apr 2;141(1):39-51 [PMID: 20371344]
  8. J Natl Compr Canc Netw. 2017 Mar;15(3):370-398 [PMID: 28275037]
  9. Thorac Cancer. 2019 May;10(5):1167-1175 [PMID: 30957407]
  10. J Natl Compr Canc Netw. 2018 Apr;16(4):359-369 [PMID: 29632055]
  11. J Exp Med. 1993 Dec 1;178(6):2077-88 [PMID: 8245783]
  12. J Integr Med. 2018 Sep;16(5):322-328 [PMID: 29929873]
  13. Mediators Inflamm. 2017;2017:6027305 [PMID: 29234189]
  14. J Bone Oncol. 2019 Feb 12;15:100223 [PMID: 30815343]
  15. J Clin Invest. 2015 Sep;125(9):3347-55 [PMID: 26325032]
  16. CA Cancer J Clin. 2019 Jan;69(1):7-34 [PMID: 30620402]
  17. Carcinogenesis. 2019 Jul 6;40(6):765-770 [PMID: 30753331]
  18. AJR Am J Roentgenol. 2016 Apr;206(4):747-55 [PMID: 26933769]
  19. Cancer. 2012 Feb 1;118(3):628-38 [PMID: 21751188]
  20. World J Gastroenterol. 2016 Aug 21;22(31):7157-65 [PMID: 27610025]
  21. J Am Stat Assoc. 2016;111(513):355-376 [PMID: 27217599]
  22. J Cell Physiol. 2018 Apr;233(4):2928-2936 [PMID: 28574572]
  23. Evolution. 1998 Dec;52(6):1564-1571 [PMID: 28565316]
  24. Clin Radiol. 2013 Oct;68(10):e524-31 [PMID: 23830776]
  25. Ann Surg Oncol. 2010 Jun;17(6):1471-4 [PMID: 20180029]
  26. Br J Cancer. 1992 Jan;65(1):102-7 [PMID: 1733432]
  27. Eur Urol. 2018 Dec;74(6):796-804 [PMID: 30241973]
  28. Eur J Cancer. 2000 Oct;36(16):2044-52 [PMID: 11044640]
  29. Colorectal Dis. 2009 Feb;11(2):150-6 [PMID: 18462242]
  30. J Integr Med. 2017 Jul;15(4):282-287 [PMID: 28659232]
  31. Stat Med. 2013 Jan 15;32(1):67-80 [PMID: 22833304]
  32. J Nippon Med Sch. 2017;84(5):224-230 [PMID: 29142183]
  33. Anticancer Res. 2014 Jun;34(6):3147-51 [PMID: 24922686]
  34. CA Cancer J Clin. 2018 Nov;68(6):394-424 [PMID: 30207593]
  35. Br J Cancer. 2017 Jun 6;116(12):1513-1519 [PMID: 28449006]
  36. Int J Mol Sci. 2018 Feb 01;19(2):null [PMID: 29389861]

Word Cloud

Created with Highcharts 10.0.0nomogramVICRCpatientsmodelinvasioncolorectalcancerpredictioncalibrationdiscriminationgoodimportantfeatureadjuvanttherapyknowledgeresectionpredictivesetvalidationselectionregressionanalysisCTNstagecurveAUC0maypreoperativevascularVascularsystemicrecurrenceindicatorapplicationPreoperativedeterminingwhethernecessarywelladequacysurgicalpresentstudyconstructedconsisted664eligibledividedtrainingn=468n=196DatacollectedAugust2013April2018establishedusingleastabsoluteshrinkageoperatorMultivariablelogisticusedconstructperformanceevaluatedclinicalusefulnessDifferentiationcomputedtomography-basedhemamebatumordistanceanuscmintegratedexhibitedarea731Applicationcohortshowedacceptable710Decisionrevealedclinicallyusefulfindingssuggestsbestfirstindividualpromoteoptimizationstrategiesselectedgrouppredict

Similar Articles

Cited By