Polymeric Core-Shell Combinatorial Nanomedicine for Synergistic Anticancer Therapy.

Asifkhan Shanavas, Nishant K Jain, Navneet Kaur, Dinesh Thummuri, Maruthi Prasanna, Rajendra Prasad, Vegi Ganga Modi Naidu, Dhirendra Bahadur, Rohit Srivastava
Author Information
  1. Asifkhan Shanavas: Habitat Centre, Institute of Nano Science and Technology, Phase-X, Sector-64, Mohali, Punjab 160062, India.
  2. Nishant K Jain: Department of Biosciences and Bioengineering and Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
  3. Navneet Kaur: Habitat Centre, Institute of Nano Science and Technology, Phase-X, Sector-64, Mohali, Punjab 160062, India.
  4. Dinesh Thummuri: National Institute of Pharmaceutical Education and Research Guwahati, Nits Mirza Road, Parlli Part, Guwahati Assam 781125, India.
  5. Maruthi Prasanna: Department of Biosciences and Bioengineering and Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
  6. Rajendra Prasad: Department of Biosciences and Bioengineering and Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
  7. Vegi Ganga Modi Naidu: National Institute of Pharmaceutical Education and Research Guwahati, Nits Mirza Road, Parlli Part, Guwahati Assam 781125, India.
  8. Dhirendra Bahadur: Department of Biosciences and Bioengineering and Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
  9. Rohit Srivastava: Department of Biosciences and Bioengineering and Department of Metallurgical Engineering & Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.

Abstract

Core-shell nanostructures are promising platforms for combination drug delivery. However, their complicated synthesis process, poor stability, surface engineering, and low biocompatibility are major hurdles. Herein, a carboxymethyl chitosan-coated poly(lactide--glycolide) (cmcPLGA) core-shell nanostructure is prepared via a simple one-step nanoprecipitation self-assembly process. Engineered core-shell nanostructures are tested for combination delivery of loaded docetaxel and doxorubicin in a cancer-mimicked environment. The drugs are compartmentalized in a shell (doxorubicin, Dox) and a core (docetaxel, Dtxl) with loading contents of ∼1.2 and ∼2.06%, respectively. Carboxymethyl chitosan with both amine and carboxyl groups act as a polyampholyte in diminishing ζ-potential of nanoparticles from fairly negative (-13 mV) to near neutral (-2 mV) while moving from a physiological pH (7.4) to an acidic tumor pH (6) that can help the nanoparticles to accumulate and release the drug on-site. The dual-drug formulation was found to carry a clinically comparable 1.7:1 weight ratio of Dtxl/Dox, nanoengineered for the sequential release of Dox followed by Dtxl. Single and engineered combinatorial nanoformulations show better growth inhibition toward three different cancer cells compared to free drug treatment. Importantly, Dox-Dtxl cmcPLGA nanoparticles scored synergism with combination index values between 0.2 and 0.3 in BT549 (breast ductal carcinoma), PC3 (prostate cancer), and A549 (lung adenocarcinoma) cell lines, demonstrating significant cell growth inhibition at lower drug concentrations as compared to single-drug control groups. The observed promising performance of dual-drug formulation is due to the G2/M phase arrest and apoptosis.

References

  1. Mol Oncol. 2007 Jun;1(1):84-96 [PMID: 18516279]
  2. Macromolecules. 2013 Dec 10;46(23):9169-9180 [PMID: 28804160]
  3. Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:448-463 [PMID: 31029340]
  4. Nanomedicine. 2015 Aug;11(6):1399-406 [PMID: 25888278]
  5. Sci Rep. 2017 Oct 16;7(1):13249 [PMID: 29038584]
  6. Sci Rep. 2018 Feb 13;8(1):2907 [PMID: 29440698]
  7. Anticancer Res. 2015 Jan;35(1):191-9 [PMID: 25550551]
  8. Chem Rev. 2016 Feb 24;116(4):2602-63 [PMID: 26854975]
  9. J Liposome Res. 2005;15(3-4):141-55 [PMID: 16393906]
  10. Sci Rep. 2017 Apr 21;7:46688 [PMID: 28429764]
  11. Mol Pharmacol. 1996 May;49(5):832-41 [PMID: 8622633]
  12. Eur J Med Chem. 2014 Mar 3;74:398-404 [PMID: 24487188]
  13. Biomaterials. 2015 Jan;39:131-44 [PMID: 25477180]
  14. Nat Biotechnol. 2009 Jul;27(7):659-66 [PMID: 19581876]
  15. Mol Pharm. 2011 Aug 1;8(4):1401-7 [PMID: 21696189]
  16. Ther Deliv. 2010 Aug;1(2):323-34 [PMID: 22816135]
  17. Br J Cancer. 2001 Jun 1;84(11):1571-6 [PMID: 11384110]
  18. Sci Rep. 2016 Oct 12;6:35267 [PMID: 27731405]
  19. J Mater Sci Mater Med. 2010 May;21(5):1587-97 [PMID: 20111985]
  20. J Pharm Sci. 2009 Mar;98(3):970-84 [PMID: 18661542]
  21. Ann Oncol. 1999 May;10(5):553-60 [PMID: 10416005]
  22. Mol Cancer Ther. 2006 Jul;5(7):1854-63 [PMID: 16891472]
  23. J Med Chem. 2018 Jun 28;61(12):5108-5121 [PMID: 29251920]
  24. Clin Cancer Res. 2000 Oct;6(10):4082-90 [PMID: 11051260]
  25. Nanomedicine. 2013 Nov;9(8):1317-27 [PMID: 23669368]
  26. Oncogene. 2012 Jun 7;31(23):2899-906 [PMID: 22002304]
  27. Int J Pharm. 2006 Nov 15;325(1-2):172-9 [PMID: 16887303]
  28. J Control Release. 2013 Jan 28;165(2):153-61 [PMID: 23178950]
  29. Cancer Res. 1989 Aug 15;49(16):4373-84 [PMID: 2545340]
  30. Clin Cancer Res. 2017 Mar 15;23(6):1379-1387 [PMID: 28039268]
  31. Nanomedicine. 2014 Apr;10(3):579-87 [PMID: 24200524]
  32. J Control Release. 2017 Mar 10;249:111-122 [PMID: 28159519]
  33. Nanomedicine. 2014 Nov;10(8):1649-59 [PMID: 24905399]
  34. J Med Chem. 2001 Apr 26;44(9):1313-33 [PMID: 11311053]

Word Cloud

Created with Highcharts 10.0.0drugcombinationnanoparticlesnanostructurespromisingdeliveryprocesscmcPLGAcore-shelldocetaxeldoxorubicinDoxDtxl2groupsmVpHreleasedual-drugformulationgrowthinhibitioncancercompared0cellCore-shellplatformsHowevercomplicatedsynthesispoorstabilitysurfaceengineeringlowbiocompatibilitymajorhurdlesHereincarboxymethylchitosan-coatedpolylactide--glycolidenanostructurepreparedviasimpleone-stepnanoprecipitationself-assemblyEngineeredtestedloadedcancer-mimickedenvironmentdrugscompartmentalizedshellcoreloadingcontents∼1∼206%respectivelyCarboxymethylchitosanaminecarboxylactpolyampholytediminishingζ-potentialfairlynegative-13nearneutral-2movingphysiological74acidictumor6canhelpaccumulateon-sitefoundcarryclinicallycomparable17:1weightratioDtxl/DoxnanoengineeredsequentialfollowedSingleengineeredcombinatorialnanoformulationsshowbettertowardthreedifferentcellsfreetreatmentImportantlyDox-Dtxlscoredsynergismindexvalues3BT549breastductalcarcinomaPC3prostateA549lungadenocarcinomalinesdemonstratingsignificantlowerconcentrationssingle-drugcontrolobservedperformancedueG2/MphasearrestapoptosisPolymericCore-ShellCombinatorialNanomedicineSynergisticAnticancerTherapy

Similar Articles

Cited By