Highly multiplexed quantitative PCR-based platform for evaluation of chicken immune responses.

Dominika Borowska, Richard Kuo, Richard A Bailey, Kellie A Watson, Pete Kaiser, Lonneke Vervelde, Mark P Stevens
Author Information
  1. Dominika Borowska: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom. ORCID
  2. Richard Kuo: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.
  3. Richard A Bailey: Aviagen Ltd, Edinburgh, Scotland, United Kingdom.
  4. Kellie A Watson: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.
  5. Pete Kaiser: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.
  6. Lonneke Vervelde: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.
  7. Mark P Stevens: The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom.

Abstract

To address the need for sensitive high-throughput assays to analyse avian innate and adaptive immune responses, we developed and validated a highly multiplexed qPCR 96.96 Fluidigm Dynamic Array to analyse the transcription of chicken immune-related genes. This microfluidic system permits the simultaneous analysis of expression of 96 transcripts in 96 samples in 6 nanolitre reactions and the 9,216 reactions are ready for interpretation immediately. A panel of 89 genes was selected from an RNA-seq analysis of the transcriptional response of chicken macrophages, dendritic cells and heterophils to agonists of innate immunity and from published transcriptome data. Assays were confirmed to be highly specific by amplicon sequencing and melting curve analysis and the reverse transcription and preamplification steps were optimised. The array was applied to RNA of various tissues from a commercial line of broiler chickens housed at two different levels of biosecurity. Gut-associated lymphoid tissues, bursa, spleen and peripheral blood leukocytes were isolated and transcript levels for immune-related genes were defined. The results identified blood cells as a potentially reliable indicator of immune responses among all the tissues tested with the highest number of genes significantly differentially transcribed between birds housed under varying biosecurity levels. Conventional qPCR analysis of three differentially transcribed genes confirmed the results from the multiplex qPCR array. A highly multiplexed qPCR-based platform for evaluation of chicken immune responses has been optimised and validated using samples from commercial chickens. Apart from applications in selective breeding programmes, the array could be used to analyse the complex interplay between the avian immune system and pathogens by including pathogen-specific probes, to screen vaccine responses, and as a predictive tool for immune robustness.

References

  1. Avian Pathol. 2018 Jun;47(3):253-260 [PMID: 29350071]
  2. Annu Rev Immunol. 2011;29:527-85 [PMID: 21219182]
  3. Blood. 2003 Jul 15;102(2):672-81 [PMID: 12663451]
  4. Res Vet Sci. 2009 Jun;86(3):533-8 [PMID: 18951595]
  5. J Virol. 2003 Jan;77(1):762-8 [PMID: 12477883]
  6. BMC Genomics. 2012 Feb 13;13:68 [PMID: 22330747]
  7. J Gen Virol. 2011 Apr;92(Pt 4):931-9 [PMID: 21177922]
  8. PLoS One. 2012;7(6):e38255 [PMID: 22679495]
  9. J Virol. 2006 Sep;80(18):9207-16 [PMID: 16940532]
  10. BMC Proc. 2011 Jun 03;5 Suppl 4:S12 [PMID: 21645291]
  11. BMC Genomics. 2010 Oct 08;11:545 [PMID: 20929591]
  12. Dev Comp Immunol. 2001 Jan;25(1):69-82 [PMID: 10980321]
  13. Arch Virol. 2012 Nov;157(11):2189-99 [PMID: 22828777]
  14. PLoS One. 2010 Jul 28;5(7):e11827 [PMID: 20676366]
  15. Vet Immunol Immunopathol. 2005 May 15;105(3-4):289-99 [PMID: 15808307]
  16. Vet Immunol Immunopathol. 2015 Mar 15;164(1-2):79-86 [PMID: 25649508]
  17. Poult Sci. 2012 Feb;91(2):346-53 [PMID: 22252347]
  18. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16245-50 [PMID: 17913878]
  19. BMC Proc. 2011 Jun 03;5 Suppl 4:S11 [PMID: 21645290]
  20. PLoS One. 2008 Feb 27;3(2):e1662 [PMID: 18301740]
  21. BMC Genomics. 2010 Jul 21;11:445 [PMID: 20663125]
  22. J Anim Breed Genet. 2010 Apr;127(2):85-6 [PMID: 20433514]
  23. Poult Sci. 2012 Mar;91(3):565-74 [PMID: 22334731]
  24. Viral Immunol. 2006 Spring;19(1):83-91 [PMID: 16553553]
  25. PLoS One. 2012;7(3):e33627 [PMID: 22438967]
  26. PLoS One. 2012;7(8):e40409 [PMID: 22870198]
  27. BMC Microbiol. 2009 Feb 04;9:28 [PMID: 19193236]
  28. FEMS Immunol Med Microbiol. 2008 Oct;54(1):114-21 [PMID: 18647351]
  29. Nat Biotechnol. 2008 Mar;26(3):317-25 [PMID: 18278033]
  30. BMC Genomics. 2006 Sep 01;7:224 [PMID: 16948847]
  31. Vet Immunol Immunopathol. 2016 Feb;170:20-4 [PMID: 26872627]
  32. Foodborne Pathog Dis. 2009 Sep;6(7):777-83 [PMID: 19737057]
  33. Proc Natl Acad Sci U S A. 2002 Feb 5;99(3):1503-8 [PMID: 11805289]
  34. Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5899-904 [PMID: 16595631]
  35. Biol Proced Online. 2004;6:94-104 [PMID: 15181476]
  36. Mol Immunol. 2010 May;47(9):1675-85 [PMID: 20382427]
  37. Science. 2001 Oct 26;294(5543):870-5 [PMID: 11679675]
  38. Br Poult Sci. 2009 Jul;50(4):504-11 [PMID: 19735020]
  39. Avian Pathol. 2008 Feb;37(1):25-31 [PMID: 18202946]
  40. J Immunol. 2012 Apr 1;188(7):3382-94 [PMID: 22393154]
  41. Vet Res. 2013 Dec 05;44:120 [PMID: 24308825]
  42. Am J Physiol Regul Integr Comp Physiol. 2006 Jan;290(1):R195-201 [PMID: 16150838]
  43. BMC Genomics. 2008 Nov 06;9:526 [PMID: 18990222]
  44. BMC Genomics. 2011 Dec 19;12:611 [PMID: 22182502]
  45. Vet Microbiol. 2008 Jan 1;126(1-3):111-21 [PMID: 17656046]

Grants

  1. BBS/E/D/20320000/Biotechnology and Biological Sciences Research Council
  2. BB/J500744/1/Biotechnology and Biological Sciences Research Council
  3. BBS/E/D/10002071/Biotechnology and Biological Sciences Research Council
  4. BBS/E/D/20002174/Biotechnology and Biological Sciences Research Council

MeSH Term

Animals
Breeding
Chickens
High-Throughput Screening Assays
Host-Pathogen Interactions
Immunity, Humoral
Immunity, Innate
Leukocytes
Microfluidic Analytical Techniques
Multiplex Polymerase Chain Reaction
Poultry Diseases
RNA-Seq
Real-Time Polymerase Chain Reaction
Vaccines

Chemicals

Vaccines

Word Cloud

Created with Highcharts 10.0.0immuneresponsesgenes96chickenanalysisanalysehighlymultiplexedqPCRarraytissueslevelsavianinnatevalidatedtranscriptionimmune-relatedsystemsamplesreactionscellsconfirmedoptimisedcommercialchickenshousedbiosecuritybloodresultsdifferentiallytranscribedplatformevaluationaddressneedsensitivehigh-throughputassaysadaptivedevelopedFluidigmDynamicArraymicrofluidicpermitssimultaneousexpressiontranscripts6nanolitre9216readyinterpretationimmediatelypanel89selectedRNA-seqtranscriptionalresponsemacrophagesdendriticheterophilsagonistsimmunitypublishedtranscriptomedataAssaysspecificampliconsequencingmeltingcurvereversepreamplificationstepsappliedRNAvariouslinebroilertwodifferentGut-associatedlymphoidbursaspleenperipheralleukocytesisolatedtranscriptdefinedidentifiedpotentiallyreliableindicatoramongtestedhighestnumbersignificantlybirdsvaryingConventionalthreemultiplexqPCR-basedusingApartapplicationsselectivebreedingprogrammesusedcomplexinterplaypathogensincludingpathogen-specificprobesscreenvaccinepredictivetoolrobustnessHighlyquantitativePCR-based

Similar Articles

Cited By