An Orthologue of the Retinoic Acid Receptor (RAR) Is Present in the Ecdysozoa Phylum Priapulida.

Elza S S Fonseca, Youhei Hiromori, Yoshifumi Kaite, Raquel Ruivo, João N Franco, Tsuyoshi Nakanishi, Miguel M Santos, L Filipe C Castro
Author Information
  1. Elza S S Fonseca: CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal.
  2. Youhei Hiromori: Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu -501-1196, Japan.
  3. Yoshifumi Kaite: Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu -501-1196, Japan.
  4. Raquel Ruivo: CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal.
  5. João N Franco: CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal.
  6. Tsuyoshi Nakanishi: Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Gifu -501-1196, Japan.
  7. Miguel M Santos: CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal.
  8. L Filipe C Castro: CIIMAR/CIMAR Interdisciplinary Centre of Marine and Environmental Research, U.Porto, 4450-208 Matosinhos, Portugal.

Abstract

Signalling molecules and their cognate receptors are central components of the Metazoa endocrine system. Defining their presence or absence in extant animal lineages is critical to accurately devise evolutionary patterns, physiological shifts and the impact of endocrine disrupting chemicals. Here, we address the evolution of retinoic acid (RA) signalling in the Priapulida worm, Lamarck, 1816, an Ecdysozoa. RA signalling has been shown to be central to chordate endocrine homeostasis, participating in multiple developmental and physiological processes. Priapulids, with their slow rate of molecular evolution and phylogenetic position, represent a key taxon to investigate the early phases of Ecdysozoa evolution. By exploring a draft genome assembly, we show, by means of phylogenetics and functional assays, that an orthologue of the nuclear receptor retinoic acid receptor (RAR) subfamily, a central mediator of RA signalling, is present in Ecdysozoa, contrary to previous perception. We further demonstrate that the Priapulida RAR displays low-affinity for retinoids (similar to annelids), and is not responsive to common endocrine disruptors acting via RAR. Our findings provide a timeline for RA signalling evolution in the Bilateria and give support to the hypothesis that the increase in RA affinity towards RAR is a late acquisition in the evolution of the Metazoa.

Keywords

References

  1. Evol Dev. 2006 Nov-Dec;8(6):502-10 [PMID: 17073934]
  2. PLoS Genet. 2006 Jul;2(7):e102 [PMID: 16839186]
  3. Physiol Rev. 2001 Jul;81(3):1269-304 [PMID: 11427696]
  4. J Evol Biol. 2012 Oct;25(10):2056-2076 [PMID: 22901035]
  5. Sci Total Environ. 1998 Jun 30;217(1-2):143-54 [PMID: 9695178]
  6. Nat Rev Mol Cell Biol. 2015 Feb;16(2):110-23 [PMID: 25560970]
  7. Gen Comp Endocrinol. 2018 Sep 1;265:77-82 [PMID: 29625121]
  8. J Exp Zool B Mol Dev Evol. 2008 Jan 15;310(1):54-72 [PMID: 17109394]
  9. Chem Biol Interact. 2009 Jul 15;180(2):238-44 [PMID: 19497422]
  10. Cell Mol Life Sci. 2015 Apr;72(8):1559-76 [PMID: 25558812]
  11. Endocrinology. 2014 Nov;155(11):4275-86 [PMID: 25116705]
  12. Sci Rep. 2016 Sep 06;6:32817 [PMID: 27595908]
  13. Rev Environ Contam Toxicol. 2018;245:65-127 [PMID: 29119384]
  14. Sci Total Environ. 1998 Apr 23;215(1-2):69-83 [PMID: 9599457]
  15. Physiol Rev. 2000 Jul;80(3):1021-54 [PMID: 10893430]
  16. Mol Cell Endocrinol. 2012 Jan 30;348(2):348-60 [PMID: 21504779]
  17. Mol Endocrinol. 2005 Jun;19(6):1418-28 [PMID: 15914711]
  18. J Hazard Mater. 2018 Sep 15;358:508-511 [PMID: 29731175]
  19. Toxicol In Vitro. 2008 Jun;22(4):1050-61 [PMID: 18289828]
  20. Proc Natl Acad Sci U S A. 2004 Jul 13;101(28):10320-5 [PMID: 15226493]
  21. Nature. 1995 Dec 14;378(6558):681-9 [PMID: 7501014]
  22. Mol Biol Evol. 2004 Oct;21(10):1923-37 [PMID: 15229292]
  23. Dev Dyn. 2003 Feb;226(2):237-44 [PMID: 12557202]
  24. Development. 2002 Jun;129(12):2905-16 [PMID: 12050138]
  25. BMC Evol Biol. 2008 Jul 25;8:219 [PMID: 18655705]
  26. Ecotoxicology. 2007 Feb;16(1):15-28 [PMID: 17219088]
  27. Mol Endocrinol. 2005 Oct;19(10):2502-16 [PMID: 15941851]
  28. Sci Adv. 2018 Feb 21;4(2):eaao1261 [PMID: 29492455]
  29. Mol Cell Endocrinol. 2009 Dec 10;313(1-2):23-35 [PMID: 19737598]
  30. Aquat Toxicol. 2012 Jan 15;106-107:20-4 [PMID: 22057251]
  31. Philos Trans R Soc Lond B Biol Sci. 2008 Apr 27;363(1496):1529-37 [PMID: 18192181]
  32. Nucl Recept Signal. 2009 May 08;7:e005 [PMID: 19471584]
  33. Environ Sci Technol. 2018 Dec 4;52(23):13951-13959 [PMID: 30398865]
  34. Endocrinology. 2009 Apr;150(4):1731-8 [PMID: 19036877]
  35. Aquat Toxicol. 2019 Mar;208:80-89 [PMID: 30639747]
  36. Nat Rev Genet. 2008 Jul;9(7):541-53 [PMID: 18542081]
  37. Aquat Toxicol. 2007 Nov 15;85(1):57-66 [PMID: 17875330]
  38. Toxicol Appl Pharmacol. 2005 Jan 1;202(1):38-49 [PMID: 15589975]
  39. Pharmacol Rev. 2006 Dec;58(4):685-704 [PMID: 17132848]
  40. PLoS Genet. 2007 Nov;3(11):e188 [PMID: 17997606]
  41. Environ Int. 2017 Sep;106:153-169 [PMID: 28662399]
  42. Evol Dev. 2006 Sep-Oct;8(5):394-406 [PMID: 16925675]
  43. Environ Monit Assess. 2016 Jun;188(6):368 [PMID: 27226172]
  44. Front Endocrinol (Lausanne). 2018 Feb 27;9:65 [PMID: 29535684]
  45. Dev Biol. 2006 Dec 1;300(1):90-107 [PMID: 17054934]
  46. J Environ Manage. 2019 May 1;237:519-525 [PMID: 30825784]
  47. Dev Genes Evol. 1998 Dec;208(10):537-46 [PMID: 9811972]
  48. Int J Biol Sci. 2006;2(2):38-47 [PMID: 16733532]
  49. Nucleic Acids Res. 2015 May 26;43(10):4833-54 [PMID: 25897113]
  50. Integr Comp Biol. 2006 Dec;46(6):815-26 [PMID: 21672787]
  51. Genesis. 2008 Nov;46(11):640-56 [PMID: 19003929]
  52. Int J Mol Sci. 2019 May 10;20(9):null [PMID: 31083458]
  53. Aquat Toxicol. 2013 Oct 15;142-143:403-13 [PMID: 24096236]
  54. Environ Sci Technol. 2014 May 20;48(10):5361-3 [PMID: 24810356]
  55. C R Biol. 2017 Sep - Oct;340(9-10):414-420 [PMID: 29126514]
  56. PLoS One. 2017 Apr 20;12(4):e0176024 [PMID: 28426724]
  57. Exp Eye Res. 2009 Sep;89(3):280-91 [PMID: 19427305]
  58. Biol Pharm Bull. 2016;39(10):1596-1603 [PMID: 27725436]
  59. Genesis. 2002 Sep-Oct;34(1-2):1-15 [PMID: 12324939]
  60. Aquat Toxicol. 2011 Jan 17;101(1):221-7 [PMID: 21036407]
  61. Chem Biol Interact. 2009 Mar 16;178(1-3):188-96 [PMID: 18926806]
  62. Syst Biol. 2010 May;59(3):307-21 [PMID: 20525638]
  63. Bioinformatics. 2010 Aug 1;26(15):1899-900 [PMID: 20427515]
  64. Gen Comp Endocrinol. 2016 Jan 1;225:142-148 [PMID: 26597622]
  65. J Virol. 1997 Aug;71(8):5952-62 [PMID: 9223485]

MeSH Term

Animals
Aquatic Organisms
Evolution, Molecular
Phylogeny
Receptors, Retinoic Acid
Sequence Analysis, DNA
Signal Transduction

Chemicals

Receptors, Retinoic Acid

Word Cloud

Created with Highcharts 10.0.0endocrineevolutionRARARsignallingEcdysozoacentralPriapulidareceptorsMetazoasystemphysiologicalretinoicacidnuclearreceptorBilateriaSignallingmoleculescognatecomponentsDefiningpresenceabsenceextantanimallineagescriticalaccuratelydeviseevolutionarypatternsshiftsimpactdisruptingchemicalsaddresswormLamarck1816shownchordatehomeostasisparticipatingmultipledevelopmentalprocessesPriapulidsslowratemolecularphylogeneticpositionrepresentkeytaxoninvestigateearlyphasesexploringdraftgenomeassemblyshowmeansphylogeneticsfunctionalassaysorthologuesubfamilymediatorpresentcontrarypreviousperceptiondemonstratedisplayslow-affinityretinoidssimilarannelidsresponsivecommondisruptorsactingviafindingsprovidetimelinegivesupporthypothesisincreaseaffinitytowardslateacquisitionOrthologueRetinoicAcidReceptorPresentPhylumxenobiotics

Similar Articles

Cited By (7)