Single-spin qubits in isotopically enriched silicon at low magnetic field.

R Zhao, T Tanttu, K Y Tan, B Hensen, K W Chan, J C C Hwang, R C C Leon, C H Yang, W Gilbert, F E Hudson, K M Itoh, A A Kiselev, T D Ladd, A Morello, A Laucht, A S Dzurak
Author Information
  1. R Zhao: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ruichen77@gmail.com.
  2. T Tanttu: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  3. K Y Tan: QCD Labs, QTF Centre of Excellence, Department of Applied Physics, Aalto University, 00076, Aalto, Finland. ORCID
  4. B Hensen: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  5. K W Chan: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  6. J C C Hwang: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  7. R C C Leon: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  8. C H Yang: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  9. W Gilbert: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia.
  10. F E Hudson: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  11. K M Itoh: School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.
  12. A A Kiselev: HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA, 90265, USA.
  13. T D Ladd: HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA, 90265, USA.
  14. A Morello: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  15. A Laucht: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. ORCID
  16. A S Dzurak: Centre for Quantum Computation and Communication Technology, School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, NSW, 2052, Australia. a.dzurak@unsw.edu.au. ORCID

Abstract

Single-electron spin qubits employ magnetic fields on the order of 1 Tesla or above to enable quantum state readout via spin-dependent-tunnelling. This requires demanding microwave engineering for coherent spin resonance control, which limits the prospects for large scale multi-qubit systems. Alternatively, singlet-triplet readout enables high-fidelity spin-state measurements in much lower magnetic fields, without the need for reservoirs. Here, we demonstrate low-field operation of metal-oxide-silicon quantum dot qubits by combining coherent single-spin control with high-fidelity, single-shot, Pauli-spin-blockade-based ST readout. We discover that the qubits decohere faster at low magnetic fields with [Formula: see text] μs and [Formula: see text] μs at 150 mT. Their coherence is limited by spin flips of residual Si nuclei in the isotopically enriched Si host material, which occur more frequently at lower fields. Our finding indicates that new trade-offs will be required to ensure the frequency stabilization of spin qubits, and highlights the importance of isotopic enrichment of device substrates for the realization of a scalable silicon-based quantum processor.

References

  1. Nat Commun. 2019 Jul 3;10(1):2776 [PMID: 31270319]
  2. Science. 2018 Jan 26;359(6374):439-442 [PMID: 29217586]
  3. Nat Commun. 2018 May 30;9(1):2133 [PMID: 29849025]
  4. Phys Rev Lett. 2016 Jan 29;116(4):046802 [PMID: 26871350]
  5. Nature. 2004 Jul 22;430(6998):431-5 [PMID: 15269762]
  6. Nature. 2018 Mar 29;555(7698):633-637 [PMID: 29443962]
  7. Phys Rev Lett. 2008 Dec 5;101(23):236803 [PMID: 19113577]
  8. Nat Mater. 2011 Dec 04;11(2):143-7 [PMID: 22138791]
  9. Nat Nanotechnol. 2018 Feb;13(2):102-106 [PMID: 29255292]
  10. Sci Rep. 2018 Apr 9;8(1):5690 [PMID: 29632303]
  11. Nat Nanotechnol. 2019 Aug;14(8):737-741 [PMID: 31086305]
  12. Nat Nanotechnol. 2020 Jan;15(1):13-17 [PMID: 31819245]
  13. Nat Nanotechnol. 2016 Apr;11(4):330-4 [PMID: 26727201]
  14. Phys Rev Lett. 2010 Jun 11;104(23):236802 [PMID: 20867261]
  15. Nanotechnology. 2013 Jan 11;24(1):015202 [PMID: 23221273]
  16. Sci Adv. 2016 Aug 12;2(8):e1600694 [PMID: 27536725]
  17. Nat Commun. 2017 Dec 15;8(1):1766 [PMID: 29242497]
  18. Nat Nanotechnol. 2014 Sep;9(9):666-70 [PMID: 25108810]
  19. Nat Nanotechnol. 2014 Dec;9(12):981-5 [PMID: 25305743]
  20. Nat Nanotechnol. 2019 May;14(5):437-441 [PMID: 30858520]
  21. Nat Nanotechnol. 2019 Aug;14(8):742-746 [PMID: 31285611]
  22. Nature. 2019 May;569(7757):532-536 [PMID: 31086337]
  23. Nat Nanotechnol. 2014 Dec;9(12):986-91 [PMID: 25305745]
  24. Nat Commun. 2016 Nov 24;7:13575 [PMID: 27882926]
  25. Phys Rev Lett. 2017 Jul 7;119(1):017701 [PMID: 28731737]
  26. Nat Commun. 2018 Oct 30;9(1):4370 [PMID: 30375392]
  27. Phys Rev Lett. 2014 Dec 12;113(24):246801 [PMID: 25541792]

Word Cloud

Created with Highcharts 10.0.0qubitsspinmagneticfieldsquantumreadoutcoherentcontrolhigh-fidelitylowerlow[Formula:seetext] μsSiisotopicallyenrichedSingle-electronemployorder1Teslaenablestateviaspin-dependent-tunnellingrequiresdemandingmicrowaveengineeringresonancelimitsprospectslargescalemulti-qubitsystemsAlternativelysinglet-tripletenablesspin-statemeasurementsmuchwithoutneedreservoirsdemonstratelow-fieldoperationmetal-oxide-silicondotcombiningsingle-spinsingle-shotPauli-spin-blockade-basedSTdiscoverdecoherefaster150 mTcoherencelimitedflipsresidualnucleihostmaterialoccurfrequentlyfindingindicatesnewtrade-offswillrequiredensurefrequencystabilizationhighlightsimportanceisotopicenrichmentdevicesubstratesrealizationscalablesilicon-basedprocessorSingle-spinsiliconfield

Similar Articles

Cited By