Machine learning distilled metabolite biomarkers for early stage renal injury.

Yan Guo, Hui Yu, Danqian Chen, Ying-Yong Zhao
Author Information
  1. Yan Guo: Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA. yanguo1978@gmail.com. ORCID
  2. Hui Yu: Department of Internal Medicine, University of New Mexico, Albuquerque, NM, USA.
  3. Danqian Chen: Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Ministry of Education, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
  4. Ying-Yong Zhao: Key Laboratory of Resource Biology and Biotechnology in Western China, School of Life Sciences, Ministry of Education, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China. zyy@nwu.edu.cn.

Abstract

INTRODUCTION: With chronic kidney disease (CKD), kidney becomes damaged overtime and fails to clean blood. Around 15% of US adults have CKD and nine in ten adults with CKD do not know they have it.
OBJECTIVE: Early prediction and accurate monitoring of CKD may improve care and decrease the frequent progression to end-stage renal disease. There is an urgent demand to discover specific biomarkers that allow for monitoring of early-stage CKD, and response to treatment.
METHOD: To discover such biomarkers, shotgun high throughput was applied to the detection of serum metabolites biomarker discovery for early stages of CKD from 703 participants. Ultra performance liquid chromatography coupled with high-definition mass spectrometry (UPLC-HDMS)-based metabolomics was used for the determination of 703 fasting serum samples from five stages of CKD patients and age-matched healthy controls.
RESULTS AND CONCLUSION: We discovered a set of metabolite biomarkers using a series of classic and neural network based machine learning techniques. This set of metabolites can separate early CKD stage patents from normal subjects with high accuracy. Our study illustrates the power of machine learning methods in metabolite biomarker study.

Keywords

References

  1. Clin Chim Acta. 2013 Jun 25;422:59-69 [PMID: 23570820]
  2. J Ren Nutr. 2006 Apr;16(2):125-31 [PMID: 16567268]
  3. Redox Biol. 2017 Aug;12:505-521 [PMID: 28343144]
  4. Clin J Am Soc Nephrol. 2014 Aug 7;9(8):1410-7 [PMID: 25011442]
  5. J Proteome Res. 2016 Oct 7;15(10):3802-3812 [PMID: 27636000]
  6. Am J Kidney Dis. 2002 Feb;39(2 Suppl 1):S1-266 [PMID: 11904577]
  7. Nephrol Dial Transplant. 2017 Jul 1;32(7):1154-1166 [PMID: 28339984]
  8. JAMA. 2007 Nov 7;298(17):2038-47 [PMID: 17986697]
  9. Semin Nephrol. 2016 Jul;36(4):319-30 [PMID: 27475662]
  10. Clin Transl Sci. 2012 Oct;5(5):379-85 [PMID: 23067349]
  11. Kidney Int. 2017 Jan;91(1):61-69 [PMID: 27692817]
  12. Nat Rev Drug Discov. 2016 Jul;15(7):473-84 [PMID: 26965202]
  13. J Proteome Res. 2013 Feb 1;12(2):692-703 [PMID: 23227912]
  14. Redox Biol. 2016 Dec;10:168-178 [PMID: 27750081]
  15. Nature. 2008 Oct 23;455(7216):1054-6 [PMID: 18948945]
  16. Nat Protoc. 2013 Jan;8(1):17-32 [PMID: 23222455]
  17. Nat Protoc. 2010 Jun;5(6):1005-18 [PMID: 20448546]
  18. Nat Rev Mol Cell Biol. 2016 Jul;17(7):451-9 [PMID: 26979502]
  19. J Diabetes Complications. 2014 Jan-Feb;28(1):10-6 [PMID: 24211091]
  20. JAMA. 2015 Aug 11;314(6):615-6 [PMID: 26262800]
  21. Ann Intern Med. 1999 Mar 16;130(6):461-70 [PMID: 10075613]
  22. Am J Kidney Dis. 2012 Aug;60(2):197-206 [PMID: 22464876]
  23. J Am Soc Nephrol. 2016 Apr;27(4):1175-88 [PMID: 26449609]
  24. Eur Urol. 2013 Feb;63(2):252-3 [PMID: 23182551]
  25. Nat Rev Nephrol. 2015 Aug;11(8):491-502 [PMID: 26055354]
  26. J Med Econ. 2017 Jun;20(6):585-591 [PMID: 28128669]
  27. Nat Rev Nephrol. 2011 Oct 25;8(1):22-33 [PMID: 22025087]
  28. Nephrol Dial Transplant. 2013 Aug;28(8):2131-8 [PMID: 23739151]
  29. Sci Rep. 2016 Feb 23;6:22151 [PMID: 26903149]
  30. J Am Soc Nephrol. 2013 Jul;24(8):1330-8 [PMID: 23687356]
  31. J Proteome Res. 2017 Apr 7;16(4):1566-1578 [PMID: 28286957]

MeSH Term

Adult
Aged
Biomarkers
Case-Control Studies
Chromatography, High Pressure Liquid
Creatinine
Female
Glomerular Filtration Rate
Humans
Machine Learning
Male
Mass Spectrometry
Middle Aged
Renal Insufficiency, Chronic
Severity of Illness Index

Chemicals

Biomarkers
Creatinine

Word Cloud

Created with Highcharts 10.0.0CKDlearningbiomarkerskidneydiseaseearlymetaboliteadultsmonitoringrenaldiscoverhighserummetabolitesbiomarkerstages703setmachinestagestudyMachineINTRODUCTION:chronicbecomesdamagedovertimefailscleanbloodAround15%USninetenknowitOBJECTIVE:Earlypredictionaccuratemayimprovecaredecreasefrequentprogressionend-stageurgentdemandspecificallowearly-stageresponsetreatmentMETHOD:shotgunthroughputapplieddetectiondiscoveryparticipantsUltraperformanceliquidchromatographycoupledhigh-definitionmassspectrometryUPLC-HDMS-basedmetabolomicsuseddeterminationfastingsamplesfivepatientsage-matchedhealthycontrolsRESULTSANDCONCLUSION:discoveredusingseriesclassicneuralnetworkbasedtechniquescanseparatepatentsnormalsubjectsaccuracyillustratespowermethodsdistilledinjuryChronicDeepGlomerularfiltrationrateMetabolite

Similar Articles

Cited By