Novel Therapeutic Strategies Applied to Infections in Cystic Fibrosis.

Michael E Chirgwin, Margaret R Dedloff, Alina Maria Holban, Monica C Gestal
Author Information
  1. Michael E Chirgwin: Department of Chemical Engineering, Clarkson University, Potsdam, NY 13699, USA.
  2. Margaret R Dedloff: Department of Biology, Clarkson University, Potsdam, NY 13699, USA.
  3. Alina Maria Holban: Department of Microbiology, Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania.
  4. Monica C Gestal: Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA. ORCID

Abstract

Cystic fibrosis (CF) is one of the most prevalent genetic diseases and a total of 1700 different genetic mutations can cause this condition. Patients that suffer this disease have a thickening of the mucus, creating an environment that promotes bacterial infections. is a ubiquitous bacterium, which is frequently found in the lungs of CF patients. is known for its high level of antibiotic resistance as well as its high rate of mutation that allows it to rapidly evolve and adapt to a multitude of conditions. When a CF lung is infected with , the decay of the patient is accelerated, but there is little that can be done apart from controlling the infection with antibiotics. Novel strategies to control infection are imperative, and nanotechnology provides novel approaches to drug delivery that are more efficient than classic antibiotic treatments. These drug delivery systems are offering new prospects, especially for these patients with special mucus conditions and bacterial characteristics that limit antibiotic use.

Keywords

References

  1. Antimicrob Agents Chemother. 2009 Sep;53(9):3847-54 [PMID: 19451281]
  2. Pharmacol Res. 2001 May;43(5):497-502 [PMID: 11394943]
  3. Respir Med. 2002 Dec;96(12):999-1005 [PMID: 12477215]
  4. J Nanobiotechnology. 2010 Sep 24;8:22 [PMID: 20868490]
  5. J Control Release. 2014 Oct 28;192:131-40 [PMID: 24997276]
  6. Pharmacol Res. 2000 Dec;42(6):541-5 [PMID: 11058406]
  7. Antimicrob Agents Chemother. 1996 Mar;40(3):665-9 [PMID: 8851590]
  8. Antimicrob Agents Chemother. 2002 Aug;46(8):2575-81 [PMID: 12121935]
  9. APMIS. 2017 Apr;125(4):304-319 [PMID: 28407419]
  10. Antimicrob Agents Chemother. 1994 May;38(5):1090-5 [PMID: 8067743]
  11. Pulm Pharmacol Ther. 2008 Dec;21(6):855-9 [PMID: 18951992]
  12. Mol Pharm. 2013 Aug 5;10(8):2986-95 [PMID: 23750747]
  13. Int J Pharm. 2013 Sep 15;454(1):233-40 [PMID: 23830944]
  14. Eur J Pharm Biopharm. 2017 Aug;117:363-371 [PMID: 28476373]
  15. J Aerosol Med Pulm Drug Deliv. 2009 Jun;22(2):131-8 [PMID: 19422313]
  16. J Control Release. 2012 Jan 10;157(1):149-59 [PMID: 21864595]
  17. J Antimicrob Chemother. 2008 Apr;61(4):859-68 [PMID: 18305202]
  18. Int J Nanomedicine. 2012;7:4053-63 [PMID: 22915848]
  19. J Appl Microbiol. 2011 Jan;110(1):106-17 [PMID: 20875034]
  20. Lancet. 2016 Nov 19;388(10059):2519-2531 [PMID: 27140670]
  21. Antimicrob Agents Chemother. 2003 Apr;47(4):1301-7 [PMID: 12654662]
  22. Biologicals. 2014 Jan;42(1):1-7 [PMID: 24309094]
  23. J Appl Microbiol. 2010 Feb;108(2):695-702 [PMID: 19709344]
  24. Int J Nanomedicine. 2019 Feb 25;14:1469-1487 [PMID: 30880959]
  25. Int J Pharm. 2014 Dec 30;477(1-2):485-94 [PMID: 25445528]
  26. Pharm Res. 2012 Dec;29(12):3335-46 [PMID: 22833052]
  27. Biochem Pharmacol. 2002 Nov 1;64(9):1407-13 [PMID: 12392822]
  28. Annu Rev Microbiol. 1993;47:139-66 [PMID: 8257096]
  29. Colloids Surf B Biointerfaces. 2015 Nov 1;135:717-25 [PMID: 26340361]
  30. J Aerosol Med Pulm Drug Deliv. 2015 Oct;28(5):353-60 [PMID: 25714328]
  31. Biomed Res Int. 2013;2013:136859 [PMID: 23984315]
  32. Antimicrob Agents Chemother. 2007 Jun;51(6):1934-8 [PMID: 17387151]
  33. J Control Release. 2003 Oct 30;92(3):265-73 [PMID: 14568408]
  34. Int J Pharm. 2012 Oct 15;436(1-2):771-7 [PMID: 22884836]
  35. Materials (Basel). 2019 Jul 06;12(13):null [PMID: 31284587]
  36. PLoS One. 2014 Dec 05;9(12):e114271 [PMID: 25479357]
  37. Microb Drug Resist. 2006 Spring;12(1):1-6 [PMID: 16584300]
  38. J Antimicrob Chemother. 1994 Dec;34(6):1001-13 [PMID: 7730214]
  39. Perspect Biol Med. 2001 Winter;44(1):1-16 [PMID: 11253299]
  40. Molecules. 2014 Apr 22;19(4):5013-27 [PMID: 24759068]
  41. Future Microbiol. 2010 Nov;5(11):1663-74 [PMID: 21133688]
  42. J Pharm Sci. 2011 Dec;100(12):5197-205 [PMID: 22020816]
  43. Mol Pharm. 2019 Apr 1;16(4):1606-1619 [PMID: 30817887]
  44. Front Microbiol. 2017 Oct 04;8:1917 [PMID: 29046671]
  45. Int J Nanomedicine. 2010 Dec 16;6:35-43 [PMID: 21289980]
  46. Pathogens. 2019 Apr 24;8(2):null [PMID: 31022836]
  47. J Control Release. 2015 Jan 28;198:55-61 [PMID: 25481442]
  48. Front Microbiol. 2018 Jul 05;9:1349 [PMID: 30026732]

Word Cloud

Created with Highcharts 10.0.0CFantibioticCysticfibrosisgeneticcanmucusbacterialpatientshighconditionsinfectionNoveldrugdeliveryoneprevalentdiseasestotal1700differentmutationscauseconditionPatientssufferdiseasethickeningcreatingenvironmentpromotesinfectionsubiquitousbacteriumfrequentlyfoundlungsknownlevelresistancewellratemutationallowsrapidlyevolveadaptmultitudelunginfecteddecaypatientacceleratedlittledoneapartcontrollingantibioticsstrategiescontrolimperativenanotechnologyprovidesnovelapproachesefficientclassictreatmentssystemsofferingnewprospectsespeciallyspecialcharacteristicslimituseTherapeuticStrategiesAppliedInfectionsFibrosisPseudomonasaeruginosabacteriophagescysticliposomesnanoparticles

Similar Articles

Cited By (6)