Zebrafish Models of Human Skeletal Disorders: Embryo and Adult Swimming Together.

Marta Carnovali, Giuseppe Banfi, Massimo Mariotti
Author Information
  1. Marta Carnovali: Gruppo Ospedaliero San Donato Foundation, Milan, Italy.
  2. Giuseppe Banfi: IRCCS Orthopedic Institute Galeazzi, Milan, Italy.
  3. Massimo Mariotti: IRCCS Orthopedic Institute Galeazzi, Milan, Italy. ORCID

Abstract

(zebrafish) is an elective model organism for the study of vertebrate development because of its high degree of homology with human genes and organs, including bone. Zebrafish embryos, because of the optical clarity, small size, and fast development, can be easily used in large-scale mutagenesis experiments to isolate mutants with developmental skeletal defects and in high-throughput screenings to find new chemical compounds for the ability to revert the pathological phenotype. On the other hand, the adult zebrafish represents another powerful resource for pathogenic and therapeutic studies about adult human bone diseases. In fish, some characteristics such as bone turnover, reparation, and remodeling of the adult bone tissue cannot be found at the embryonic stage. Several pathological models have been established in adult zebrafish such as bone injury models, osteoporosis, and genetic diseases such as osteogenesis imperfecta. Given the growing interest for metabolic diseases and their complications, adult zebrafish models of type 2 diabetes and obesity have been recently generated and analyzed for bone complications using scales as model system. Interestingly, an osteoporosis-like phenotype has been found to be associated with metabolic alterations suggesting that bone complications share the same mechanisms in humans and fish. Embryo and adult represent powerful resources in rapid development to study bone physiology and pathology from different points of view.

References

  1. Hum Mol Genet. 2015 Mar 1;24(5):1280-94 [PMID: 25326392]
  2. Clin Immunol. 2015 Aug;159(2):163-9 [PMID: 25840106]
  3. Nat Commun. 2013;4:1467 [PMID: 23403568]
  4. Genetics. 2017 Oct;207(2):609-623 [PMID: 28835471]
  5. J Cell Physiol. 2016 Aug;231(8):1688-94 [PMID: 26660761]
  6. Endocrine. 2016 Dec;54(3):808-817 [PMID: 27696252]
  7. Bone. 2011 Apr 1;48(4):704-12 [PMID: 21185415]
  8. J Morphol. 2001 Dec;250(3):197-207 [PMID: 11746460]
  9. Orphanet J Rare Dis. 2017 May 10;12(1):85 [PMID: 28486967]
  10. Development. 2014 Jun;141(11):2225-34 [PMID: 24821985]
  11. Methods. 2014 Sep;69(2):142-50 [PMID: 24704174]
  12. Acta Med Port. 2013 Sep-Oct;26(5):583-92 [PMID: 24192099]
  13. J Endocrinol. 2015 Apr;225(1):R1-19 [PMID: 25655764]
  14. PeerJ. 2018 Oct 1;6:e5739 [PMID: 30294512]
  15. Methods Mol Biol. 2019;1891:155-163 [PMID: 30414131]
  16. Bonekey Rep. 2013 Nov 13;2:445 [PMID: 24422140]
  17. Dev Biol. 2001 Oct 15;238(2):239-46 [PMID: 11784007]
  18. Calcif Tissue Int. 2017 May;100(5):528-535 [PMID: 28280846]
  19. Eur Cell Mater. 2019 Jan 30;37:74-87 [PMID: 30698270]
  20. Animal Model Exp Med. 2018 Nov 21;1(4):255-265 [PMID: 30891575]
  21. Bonekey Rep. 2016 Nov 16;5:853 [PMID: 27867499]
  22. Menopause. 2017 Oct;24(10):1208-1216 [PMID: 28538603]
  23. Zebrafish. 2010 Sep;7(3):267-73 [PMID: 20874492]
  24. F1000Res. 2015 Sep 07;4(F1000 Faculty Rev):681 [PMID: 26401268]
  25. PLoS Genet. 2016 Jan 28;12(1):e1005802 [PMID: 26820155]
  26. Am J Hum Genet. 2015 Mar 5;96(3):432-9 [PMID: 25683121]
  27. Dis Model Mech. 2019 Sep 3;12(9):null [PMID: 31383797]
  28. Exp Anim. 2019 Nov 6;68(4):407-416 [PMID: 31118344]
  29. Nutrients. 2019 May 09;11(5):null [PMID: 31075971]
  30. Development. 2008 Nov;135(22):3765-74 [PMID: 18927155]
  31. Development. 1996 Dec;123:357-67 [PMID: 9007255]
  32. Orphanet J Rare Dis. 2011 Dec 01;6:80 [PMID: 22133093]
  33. Am J Hum Genet. 2015 Aug 6;97(2):337-42 [PMID: 26211971]
  34. Development. 2010 Aug 1;137(15):2507-17 [PMID: 20573696]
  35. Hum Mol Genet. 2017 Aug 1;26(15):2897-2911 [PMID: 28475764]
  36. Dev Biol. 2003 Dec 1;264(1):64-76 [PMID: 14623232]
  37. Genesis. 2011 Apr;49(4):360-6 [PMID: 21225658]
  38. Clin Cases Miner Bone Metab. 2015 May-Aug;12(2):188-94 [PMID: 26604948]
  39. Osteoporos Int. 2014 Feb;25(2):567-78 [PMID: 23903952]
  40. Molecules. 2019 Apr 17;24(8):null [PMID: 30999617]
  41. Biol Open. 2012 Sep 15;1(9):915-21 [PMID: 23213486]
  42. Nat Commun. 2015 Mar 18;6:6452 [PMID: 25784220]
  43. Development. 2015 Mar 15;142(6):1095-101 [PMID: 25758222]
  44. J Bone Miner Res. 2018 Aug;33(8):1489-1499 [PMID: 29665086]
  45. Biochem Biophys Res Commun. 2016 Jul 1;475(3):271-6 [PMID: 27184405]
  46. Proc Natl Acad Sci U S A. 2018 Aug 21;115(34):E8037-E8046 [PMID: 30082390]
  47. Adv Space Res. 2003;32(8):1459-65 [PMID: 15000082]
  48. Wound Repair Regen. 2010 Sep-Oct;18(5):532-42 [PMID: 20840523]
  49. Aerosp Med Hum Perform. 2015 Dec;86(12 Suppl):A38-A44 [PMID: 26630194]
  50. Front Endocrinol (Lausanne). 2012 Jul 18;3:91 [PMID: 22826703]
  51. PLoS One. 2013 Dec 17;8(12):e83155 [PMID: 24358259]
  52. PLoS One. 2012;7(11):e50744 [PMID: 23185643]
  53. Front Genet. 2013 May 08;4:74 [PMID: 23760765]
  54. Philos Trans R Soc Lond B Biol Sci. 2018 Sep 24;373(1759): [PMID: 30249781]
  55. Osteoarthritis Cartilage. 2013 Feb;21(2):269-78 [PMID: 23159952]
  56. Am J Hum Genet. 2011 Nov 11;89(5):595-606 [PMID: 22019272]
  57. Methods Cell Biol. 2011;105:239-55 [PMID: 21951533]
  58. J Vis Exp. 2018 Oct 18;(140): [PMID: 30394396]
  59. Prog Biophys Mol Biol. 2016 Nov;122(2):122-130 [PMID: 26657214]
  60. Development. 2012 Jan;139(1):141-50 [PMID: 22096076]
  61. PLoS One. 2014 Feb 20;9(2):e89296 [PMID: 24586670]
  62. Dev Biol. 2011 Sep 15;357(2):518-31 [PMID: 21723274]
  63. J Biomol Screen. 2005 Dec;10(8):823-31 [PMID: 16234346]
  64. Biochem Biophys Res Commun. 2018 Feb 5;496(2):654-660 [PMID: 29305866]
  65. Dev Biol. 2014 Feb 1;386(1):72-85 [PMID: 24333517]
  66. Nat Genet. 2014 Jan;46(1):70-6 [PMID: 24241535]
  67. Sci Rep. 2018 Feb 26;8(1):3646 [PMID: 29483529]
  68. Biomed Opt Express. 2019 Feb 11;10(3):1184-1195 [PMID: 30891338]
  69. F1000Res. 2019 Mar 11;8:273 [PMID: 31231513]
  70. Calcif Tissue Int. 2017 May;100(5):486-499 [PMID: 27928591]
  71. Regul Pept. 2005 Dec 15;132(1-3):33-40 [PMID: 16181689]
  72. Am J Med Genet C Semin Med Genet. 2013 Nov;163C(4):306-17 [PMID: 24123988]
  73. Aquat Toxicol. 2018 Jan;194:208-226 [PMID: 29202272]
  74. Dev Dyn. 2009 Jan;238(1):241-8 [PMID: 19097055]
  75. Pediatr Neurol. 2015 Nov;53(5):394-401 [PMID: 26371995]
  76. N Engl J Med. 2013 Oct 17;369(16):1529-36 [PMID: 24088043]
  77. Sci Rep. 2016 Dec 19;6:39191 [PMID: 27991522]
  78. Nat Commun. 2014 Sep 03;5:4777 [PMID: 25182715]
  79. PLoS One. 2010 Mar 05;5(3):e9475 [PMID: 20221441]
  80. Int J Exp Pathol. 2015 Feb;96(1):11-20 [PMID: 25603732]
  81. Dev Biol. 2011 Dec 1;360(1):96-109 [PMID: 21963458]
  82. Diabetes. 2016 Jul;65(7):1757-66 [PMID: 27329951]
  83. Science. 2012 Jun 1;336(6085):1150-3 [PMID: 22582013]
  84. Endocrine. 2018 Aug;61(2):317-326 [PMID: 29274064]
  85. Front Endocrinol (Lausanne). 2019 Jan 29;10:6 [PMID: 30761080]
  86. J Bone Miner Res. 2019 Jun;34(6):996-1013 [PMID: 31233632]
  87. J Bone Miner Res. 2019 Feb;34(2):241-251 [PMID: 30320955]
  88. Cell Tissue Res. 2012 Oct;350(1):69-75 [PMID: 22669163]
  89. Curr Biol. 2018 Dec 17;28(24):3937-3947.e4 [PMID: 30503623]
  90. Elife. 2018 Oct 25;7: [PMID: 30375332]
  91. Cell J. 2014 Summer;16(2):211-24 [PMID: 24567948]
  92. J Mol Histol. 2012 Oct;43(5):589-95 [PMID: 22661010]
  93. PLoS One. 2014 Feb 19;9(2):e89347 [PMID: 24586706]
  94. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14024-9 [PMID: 14612568]
  95. Hum Mutat. 2015 Feb;36(2):191-5 [PMID: 25402547]
  96. Nat Rev Drug Discov. 2015 Oct;14(10):721-31 [PMID: 26361349]
  97. Nat Genet. 2013 Jun;45(6):676-9 [PMID: 23666238]
  98. PLoS One. 2016 Nov 23;11(11):e0166984 [PMID: 27880803]
  99. Ann Transl Med. 2015 May;3(Suppl 1):S19 [PMID: 26046064]
  100. Dev Dyn. 2003 Nov;228(3):337-57 [PMID: 14579374]
  101. Curr Opin Pediatr. 2017 Dec;29(6):622-628 [PMID: 28914635]
  102. Cell Cycle. 2019 Nov;18(21):2828-2848 [PMID: 31516082]
  103. Metabolism. 2015 Jan;64(1):105-13 [PMID: 25497343]
  104. Genesis. 2010 Aug;48(8):505-11 [PMID: 20506187]
  105. Development. 1994 May;120(5):1109-21 [PMID: 8026324]
  106. Hum Mol Genet. 2018 Jul 1;27(13):2383-2391 [PMID: 29659823]
  107. Bone Rep. 2019 Jul 17;11:100215 [PMID: 31388517]
  108. BMC Dev Biol. 2013 May 28;13:23 [PMID: 23714426]
  109. Dev Dyn. 2014 Dec;243(12):1646-57 [PMID: 25283277]
  110. PLoS Genet. 2011 Aug;7(8):e1002246 [PMID: 21901110]
  111. Bonekey Rep. 2015 Sep 16;4:745 [PMID: 26421148]
  112. Genesis. 2017 Mar;55(3): [PMID: 28109039]
  113. Development. 2009 Dec;136(23):3991-4000 [PMID: 19906866]
  114. Dis Model Mech. 2014 Jul;7(7):811-22 [PMID: 24906371]
  115. Dis Model Mech. 2013 Sep;6(5):1080-8 [PMID: 24046387]
  116. Curr Top Dev Biol. 2017;124:81-124 [PMID: 28335865]
  117. Eur J Med Genet. 2014 Sep;57(9):536-42 [PMID: 25019372]
  118. Physiol Rev. 2017 Jul 1;97(3):889-938 [PMID: 28468832]
  119. Dev Dyn. 2016 Jan;245(1):7-21 [PMID: 26434741]

MeSH Term

Animals
Bone Diseases
Bone Remodeling
Bone and Bones
Diabetes Mellitus, Type 2
Disease Models, Animal
Embryo, Nonmammalian
Humans
Osteoporosis
Phenotype
Zebrafish

Word Cloud

Created with Highcharts 10.0.0boneadultzebrafishdevelopmentdiseasesmodelscomplicationsmodelstudyhumanZebrafishpathologicalphenotypepowerfulfishfoundmetabolicEmbryoelectiveorganismvertebratehighdegreehomologygenesorgansincludingembryosopticalclaritysmallsizefastcaneasilyusedlarge-scalemutagenesisexperimentsisolatemutantsdevelopmentalskeletaldefectshigh-throughputscreeningsfindnewchemicalcompoundsabilityreverthandrepresentsanotherresourcepathogenictherapeuticstudiescharacteristicsturnoverreparationremodelingtissueembryonicstageSeveralestablishedinjuryosteoporosisgeneticosteogenesisimperfectaGivengrowinginteresttype2diabetesobesityrecentlygeneratedanalyzedusingscalessystemInterestinglyosteoporosis-likeassociatedalterationssuggestingsharemechanismshumansrepresentresourcesrapidphysiologypathologydifferentpointsviewModelsHumanSkeletalDisorders:AdultSwimmingTogether

Similar Articles

Cited By (35)