Skeletal muscle size, function, and adiposity with lifelong aerobic exercise.

Toby L Chambers, Timothy R Burnett, Ulrika Raue, Gary A Lee, W Holmes Finch, Bruce M Graham, Todd A Trappe, Scott Trappe
Author Information
  1. Toby L Chambers: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  2. Timothy R Burnett: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  3. Ulrika Raue: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  4. Gary A Lee: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  5. W Holmes Finch: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  6. Bruce M Graham: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  7. Todd A Trappe: Human Performance Laboratory, Ball State University, Muncie, Indiana.
  8. Scott Trappe: Human Performance Laboratory, Ball State University, Muncie, Indiana.

Abstract

We examined the influence of lifelong aerobic exercise on skeletal muscle size, function, and adiposity. Young exercisers [YE; = 20, 10 women (W), 25 ± 1 yr], lifelong exercisers (LLE; = 28, 7 W, 74 ± 2 yr), and old healthy nonexercisers (OH; = 20, 10 W, 75 ± 1 yr) were studied. On average, LLE exercised 5 days/wk for 7 h/wk over the past 52 ± 1 yr. The LLE men were subdivided by exercise intensity [Performance (LLE-P), = 14; Fitness (LLE-F), = 7]. Upper and lower leg muscle size and adiposity [intermuscular adipose tissue (IMAT)] were determined via MRI, and quadriceps isotonic and isometric function was assessed. For the quadriceps, aging decreased muscle size, isotonic and isometric strength, contraction velocity (men only), and power ( < 0.05). In women, LLE did not influence muscle size or function. In men, LLE attenuated the decline in muscle size and isometric strength by ~50% ( < 0.05). LLE did not influence other aspects of muscle function, nor did training intensity influence muscle size or function. For the triceps surae, aging decreased muscle size only in the women, whereas LLE (both sexes) and training intensity (LLE men) did not influence muscle size. In both sexes, aging increased thigh and calf IMAT by ~130% ( < 0.05), whereas LLE attenuated the thigh increase by ~50% ( < 0.05). In the LLE men, higher training intensity decreased thigh and calf IMAT by ~30% ( < 0.05). In summary, aging and lifelong aerobic exercise influenced muscle size, function, and adipose tissue infiltration in a sex- and muscle-specific fashion. Higher training intensity throughout the life span provided greater protection against adipose tissue infiltration into muscle. This is the first study to examine skeletal muscle size, function, and adiposity in women and men in their eighth decade of life that have engaged in lifelong aerobic exercise. The findings reveal sex and upper and lower leg muscle group-specific benefits related to skeletal muscle size, function, and adiposity and that exercise intensity influences intermuscular adiposity. This emerging cohort will further our understanding of the health implications of maintaining exercise throughout the life span.

Keywords

References

  1. J Appl Physiol (1985). 2001 Jun;90(6):2070-4 [PMID: 11356767]
  2. Am J Physiol Regul Integr Comp Physiol. 2011 Mar;300(3):R655-62 [PMID: 21160058]
  3. Front Nutr. 2019 May 24;6:75 [PMID: 31179284]
  4. J Appl Physiol (1985). 2018 Nov 1;125(5):1636-1645 [PMID: 30161005]
  5. Eur J Appl Physiol. 2002 Oct;87(6):556-61 [PMID: 12355196]
  6. Scand J Med Sci Sports. 1996 Aug;6(4):205-10 [PMID: 8896092]
  7. J Surg Res. 2015 Nov;199(1):51-5 [PMID: 25990695]
  8. Scand J Rehabil Med. 1986;18(4):159-63 [PMID: 3810082]
  9. Exp Gerontol. 2013 Nov;48(11):1147-55 [PMID: 23886750]
  10. Clin Sci (Lond). 1999 Nov;97(5):557-67 [PMID: 10545306]
  11. Nutr Clin Pract. 2014 Apr;29(2):159-70 [PMID: 24531627]
  12. J Neurol Sci. 1988 Apr;84(2-3):275-94 [PMID: 3379447]
  13. J Appl Physiol (1985). 2013 Jan 1;114(1):3-10 [PMID: 23065759]
  14. J Appl Physiol (1985). 2008 Dec;105(6):1907-15 [PMID: 18927271]
  15. Am J Physiol Cell Physiol. 2001 Aug;281(2):C398-406 [PMID: 11443039]
  16. Am J Physiol Endocrinol Metab. 2009 Nov;297(5):E987-98 [PMID: 19738037]
  17. Am J Clin Nutr. 2007 Feb;85(2):377-84 [PMID: 17284732]
  18. IEEE Trans Med Imaging. 1998 Feb;17(1):87-97 [PMID: 9617910]
  19. J Clin Endocrinol Metab. 2008 Jul;93(7):2851-8 [PMID: 18430776]
  20. J Physiol. 2003 Oct 1;552(Pt 1):47-58 [PMID: 12837929]
  21. Ann Gastroenterol. 2018 Jul-Aug;31(4):491-498 [PMID: 29991895]
  22. Am J Physiol Endocrinol Metab. 2005 Feb;288(2):E360-4 [PMID: 15367399]
  23. Pflugers Arch. 1974 Apr 22;348(3):247-55 [PMID: 4275915]
  24. Br J Nutr. 2007 Aug;98(2):237-52 [PMID: 17403271]
  25. BMC Musculoskelet Disord. 2014 Jun 17;15:209 [PMID: 24939372]
  26. Aging (Milano). 1997 Feb-Apr;9(1-2):80-7 [PMID: 9177589]
  27. J Am Med Dir Assoc. 2011 May;12(4):249-56 [PMID: 21527165]
  28. Aging Cell. 2015 Aug;14(4):511-23 [PMID: 25866088]
  29. Electroencephalogr Clin Neurophysiol. 1987 Nov;67(5):402-11 [PMID: 2444408]
  30. J Appl Physiol (1985). 2007 Feb;102(2):748-54 [PMID: 17053107]
  31. Eur J Appl Physiol. 2018 Apr;118(4):785-793 [PMID: 29380044]
  32. Br J Nutr. 2006 Nov;96(5):895-901 [PMID: 17092379]
  33. Med Sci Sports Exerc. 2007 Nov;39(11):1989-96 [PMID: 17986907]
  34. Phys Sportsmed. 2011 Sep;39(3):172-8 [PMID: 22030953]
  35. Physiol Rev. 2017 Oct 1;97(4):1351-1402 [PMID: 28814614]
  36. Curr Opin Clin Nutr Metab Care. 2004 May;7(3):271-7 [PMID: 15075918]
  37. Am J Physiol Regul Integr Comp Physiol. 2009 Nov;297(5):R1452-9 [PMID: 19692660]
  38. J Am Coll Surg. 2013 Nov;217(5):813-8 [PMID: 24119996]
  39. Exp Gerontol. 2017 Jul;93:54-67 [PMID: 28411009]
  40. Exp Gerontol. 2017 Jun;92:96-105 [PMID: 28363433]
  41. J Gerontol A Biol Sci Med Sci. 2018 Sep 11;73(10):1287-1294 [PMID: 29529132]
  42. J Appl Physiol (1985). 2009 Apr;106(4):1159-68 [PMID: 19150852]
  43. J Gerontol A Biol Sci Med Sci. 2005 Sep;60(9):1111-7 [PMID: 16183948]
  44. J Appl Physiol (1985). 2009 May;106(5):1611-7 [PMID: 19246651]
  45. Am J Physiol Regul Integr Comp Physiol. 2018 Sep 1;315(3):R461-R468 [PMID: 29718700]
  46. Mech Ageing Dev. 2013 Nov-Dec;134(11-12):531-40 [PMID: 24287006]
  47. J Appl Physiol (1985). 1990 Mar;68(3):990-6 [PMID: 2111314]
  48. J Appl Physiol (1985). 2015 Jun 15;118(12):1460-6 [PMID: 25749440]
  49. J Appl Physiol (1985). 2000 Jul;89(1):143-52 [PMID: 10904046]
  50. Aviat Space Environ Med. 2013 Aug;84(8):789-96 [PMID: 23926653]
  51. Physiology (Bethesda). 2017 Mar;32(2):152-161 [PMID: 28228482]
  52. Eur J Appl Physiol Occup Physiol. 1982;48(3):331-43 [PMID: 7200876]
  53. Int J Sports Med. 2001 Apr;22(3):186-91 [PMID: 11354521]
  54. Am J Hum Biol. 2010 Jan-Feb;22(1):76-82 [PMID: 19533617]
  55. Annu Rev Biochem. 1975;44:933-55 [PMID: 1094924]
  56. Am J Clin Nutr. 2009 Dec;90(6):1579-85 [PMID: 19864405]
  57. J Appl Physiol Respir Environ Exerc Physiol. 1984 Apr;56(4):831-8 [PMID: 6373687]
  58. J Gerontol A Biol Sci Med Sci. 1995 Nov;50 Spec No:11-6 [PMID: 7493202]
  59. J Appl Physiol (1985). 2012 Nov;113(9):1495-504 [PMID: 22984247]
  60. Acta Physiol (Oxf). 2007 Oct;191(2):147-59 [PMID: 17655736]
  61. J Musculoskelet Neuronal Interact. 2013 Sep;13(3):320-8 [PMID: 23989253]
  62. Int J Endocrinol. 2014;2014:309570 [PMID: 24527032]
  63. Circulation. 2016 Dec 13;134(24):e653-e699 [PMID: 27881567]
  64. World J Surg. 2018 Jun;42(6):1733-1741 [PMID: 29285609]
  65. J Appl Physiol (1985). 1988 Sep;65(3):1147-51 [PMID: 3182484]
  66. Liver Transpl. 2013 Dec;19(12):1396-402 [PMID: 24151041]
  67. Acta Physiol Scand. 2005 Mar;183(3):291-8 [PMID: 15743389]
  68. Am J Clin Nutr. 2006 Sep;84(3):475-82 [PMID: 16960159]
  69. J Aging Phys Act. 2010 Jan;18(1):14-26 [PMID: 20181991]
  70. Scand J Med Sci Sports. 2012 Oct;22(5):662-70 [PMID: 21477203]
  71. Am J Clin Nutr. 2000 Apr;71(4):885-92 [PMID: 10731493]
  72. Exp Physiol. 2014 Dec 1;99(12):1586-92 [PMID: 25398709]
  73. J Appl Physiol (1985). 2008 Nov;105(5):1498-503 [PMID: 18818386]
  74. J Appl Physiol (1985). 2007 Dec;103(6):2068-76 [PMID: 17901242]
  75. Acta Physiol Scand. 1993 Aug;148(4):379-85 [PMID: 8213193]

MeSH Term

Adipose Tissue
Adiposity
Adult
Aged
Aging
Exercise
Female
Humans
Lower Extremity
Male
Muscle Strength
Muscle, Skeletal
Young Adult

Word Cloud

Created with Highcharts 10.0.0musclesizefunctionLLEexerciselifelongadipositymenintensityinfluence=aging<005aerobicwomenadiposetissuetrainingskeletalWyrIMATisometricdecreasedthighlifeexercisers20107lowerlegquadricepsisotonicstrengthattenuated~50%whereassexescalfinfiltrationthroughoutspanintermuscularexaminedYoung[YE25 ± 1yr]2874 ± 2oldhealthynonexercisersOH75 ± 1studiedaverageexercised5days/wkh/wkpast52 ± 1subdivided[PerformanceLLE-P14FitnessLLE-F7]Upper[intermuscular]determinedviaMRIassessedcontractionvelocitypowerdeclineaspectstricepssuraeincreased~130%increasehigher~30%summaryinfluencedsex-muscle-specificfashionHigherprovidedgreaterprotectionfirststudyexamineeighthdecadeengagedfindingsrevealsexuppergroup-specificbenefitsrelatedinfluencesemergingcohortwillunderstandinghealthimplicationsmaintainingSkeletalmass

Similar Articles

Cited By