Colloidal quantum dot molecules manifesting quantum coupling at room temperature.

Jiabin Cui, Yossef E Panfil, Somnath Koley, Doaa Shamalia, Nir Waiskopf, Sergei Remennik, Inna Popov, Meirav Oded, Uri Banin
Author Information
  1. Jiabin Cui: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. ORCID
  2. Yossef E Panfil: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  3. Somnath Koley: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  4. Doaa Shamalia: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  5. Nir Waiskopf: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  6. Sergei Remennik: The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  7. Inna Popov: The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  8. Meirav Oded: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
  9. Uri Banin: Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel. uri.banin@mail.huji.ac.il. ORCID

Abstract

Coupling of atoms is the basis of chemistry, yielding the beauty and richness of molecules. We utilize semiconductor nanocrystals as artificial atoms to form nanocrystal molecules that are structurally and electronically coupled. CdSe/CdS core/shell nanocrystals are linked to form dimers which are then fused via constrained oriented attachment. The possible nanocrystal facets in which such fusion takes place are analyzed with atomic resolution revealing the distribution of possible crystal fusion scenarios. Coherent coupling and wave-function hybridization are manifested by a redshift of the band gap, in agreement with quantum mechanical simulations. Single nanoparticle spectroscopy unravels the attributes of coupled nanocrystal dimers related to the unique combination of quantum mechanical tunneling and energy transfer mechanisms. This sets the stage for nanocrystal chemistry to yield a diverse selection of coupled nanocrystal molecules constructed from controlled core/shell nanocrystal building blocks. These are of direct relevance for numerous applications in displays, sensing, biological tagging and emerging quantum technologies.

References

  1. J Am Chem Soc. 2005 Aug 10;127(31):10889-97 [PMID: 16076195]
  2. Science. 2014 Jun 20;344(6190):1377-80 [PMID: 24948734]
  3. Science. 2017 Feb 10;355(6325):616-619 [PMID: 28183975]
  4. Science. 1997 Dec 5;278(5344):1792-5 [PMID: 9388180]
  5. J Am Chem Soc. 2016 Oct 12;138(40):13260-13270 [PMID: 27636121]
  6. ACS Nano. 2013 Apr 23;7(4):3411-9 [PMID: 23521208]
  7. Nano Lett. 2019 Jun 12;19(6):3699-3706 [PMID: 31026170]
  8. Nat Commun. 2012 Jun 19;3:908 [PMID: 22713750]
  9. J Am Chem Soc. 2012 Nov 14;134(45):18585-90 [PMID: 23061923]
  10. Nat Nanotechnol. 2009 Jan;4(1):56-63 [PMID: 19119284]
  11. Science. 2016 Aug 26;353(6302): [PMID: 27563099]
  12. Sci Adv. 2017 May 05;3(5):e1602916 [PMID: 28508074]
  13. Science. 1998 Aug 14;281(5379):969-71 [PMID: 9703506]
  14. Nat Nanotechnol. 2013 Sep;8(9):649-53 [PMID: 23912060]
  15. ACS Nano. 2014 Jul 22;8(7):7288-96 [PMID: 24909861]
  16. J Am Chem Soc. 2006 Aug 16;128(32):10436-41 [PMID: 16895408]
  17. J Am Chem Soc. 2013 Feb 13;135(6):2213-21 [PMID: 23346956]
  18. Science. 2002 Jul 12;297(5579):237-40 [PMID: 12114622]
  19. Science. 2010 Jul 30;329(5991):550-3 [PMID: 20671184]
  20. Science. 2001 Jan 19;291(5503):451-3 [PMID: 11161192]
  21. Nano Lett. 2011 Mar 9;11(3):1136-40 [PMID: 21288042]
  22. Nature. 1996 Aug 15;382(6592):609-11 [PMID: 8757130]
  23. Nat Mater. 2013 May;12(5):445-51 [PMID: 23377294]
  24. ACS Nano. 2012 Jul 24;6(7):6453-61 [PMID: 22708556]
  25. J Am Chem Soc. 2005 May 18;127(19):7140-7 [PMID: 15884956]
  26. Nat Commun. 2018 Apr 18;9(1):1536 [PMID: 29670113]
  27. Science. 2006 Feb 3;311(5761):636-9 [PMID: 16410487]
  28. J Am Chem Soc. 2014 Mar 26;136(12):4670-9 [PMID: 24564575]
  29. J Am Chem Soc. 2011 Nov 2;133(43):17504-12 [PMID: 21954890]
  30. ACS Nano. 2018 Apr 24;12(4):3178-3189 [PMID: 29470056]
  31. J Am Chem Soc. 2011 Nov 16;133(45):18062-5 [PMID: 22003956]
  32. Nature. 2011 Nov 09;479(7372):203-7 [PMID: 22071764]

Word Cloud

Created with Highcharts 10.0.0nanocrystalquantummoleculescoupledatomschemistrynanocrystalsformcore/shelldimerspossiblefusioncouplingmechanicalCouplingbasisyieldingbeautyrichnessutilizesemiconductorartificialstructurallyelectronicallyCdSe/CdSlinkedfusedviaconstrainedorientedattachmentfacetstakesplaceanalyzedatomicresolutionrevealingdistributioncrystalscenariosCoherentwave-functionhybridizationmanifestedredshiftbandgapagreementsimulationsSinglenanoparticlespectroscopyunravelsattributesrelateduniquecombinationtunnelingenergytransfermechanismssetsstageyielddiverseselectionconstructedcontrolledbuildingblocksdirectrelevancenumerousapplicationsdisplayssensingbiologicaltaggingemergingtechnologiesColloidaldotmanifestingroomtemperature

Similar Articles

Cited By