Q-Nuc: a bioinformatics pipeline for the quantitative analysis of nucleosomal profiles.

Yuan Wang, Qiu Sun, Jie Liang, Hua Li, Daniel M Czajkowsky, Zhifeng Shao
Author Information
  1. Yuan Wang: State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
  2. Qiu Sun: Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
  3. Jie Liang: Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
  4. Hua Li: State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. kaikaixinxin@sjtu.edu.cn. ORCID
  5. Daniel M Czajkowsky: State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China. dczaj@sjtu.edu.cn.
  6. Zhifeng Shao: State Key Laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.

Abstract

Nucleosomal profiling is an effective method to determine the positioning and occupancy of nucleosomes, which is essential to understand their roles in genomic processes. However, the positional randomness across the genome and its relationship with nucleosome occupancy remains poorly understood. Here we present a computational method that segments the profile into nucleosomal domains and quantifies their randomness and relative occupancy level. Applying this method to published data, we find on average���~���3-fold differences in the degree of positional randomness between regions typically considered "well-ordered", as well as an unexpected predominance of only two types of domains of positional randomness in yeast cells. Further, we find that occupancy levels between domains actually differ maximally by���~���2-3-fold in both cells, which has not been described before. We also developed a procedure by which one can estimate the sequencing depth that is required to identify nucleosomal positions even when regional positional randomness is high. Overall, we have developed a pipeline to quantitatively characterize domain-level features of nucleosome randomness and occupancy genome-wide, enabling the identification of otherwise unknown features in nucleosomal organization.

Keywords

References

  1. Brief Bioinform. 2016 Sep;17(5):745-57 [PMID: 26411474]
  2. Nat Struct Mol Biol. 2010 Feb;17(2):251-7 [PMID: 20118936]
  3. Microbiol Mol Biol Rev. 2011 Jun;75(2):301-20 [PMID: 21646431]
  4. Bioinformatics. 2012 Aug 1;28(15):1965-71 [PMID: 22668788]
  5. Genome Res. 2013 Feb;23(2):341-51 [PMID: 23193179]
  6. Methods Enzymol. 2012;513:145-68 [PMID: 22929768]
  7. Genome Res. 2008 Sep;18(9):1509-17 [PMID: 18550803]
  8. Science. 2002 Aug 16;297(5584):1183-6 [PMID: 12183631]
  9. Nat Methods. 2012 Feb 28;9(3):215-6 [PMID: 22373907]
  10. Cell. 2008 Mar 7;132(5):887-98 [PMID: 18329373]
  11. Nat Rev Genet. 2009 Mar;10(3):161-72 [PMID: 19204718]
  12. Trends Genet. 2010 Nov;26(11):476-83 [PMID: 20832136]
  13. Nat Struct Mol Biol. 2013 Mar;20(3):267-73 [PMID: 23463311]
  14. Mol Cell. 2018 Jul 19;71(2):294-305.e4 [PMID: 30017582]
  15. BMC Bioinformatics. 2013 Oct 11;14:307 [PMID: 24118904]
  16. J Biol Chem. 2008 Dec 12;283(50):34532-40 [PMID: 18930918]
  17. Cell. 2016 Dec 1;167(6):1555-1570.e15 [PMID: 27889238]
  18. Genome Biol. 2009;10(10):R109 [PMID: 19814794]
  19. Genes Dev. 2014 Feb 15;28(4):396-408 [PMID: 24532716]
  20. Nat Genet. 2019 Sep;51(9):1356-1368 [PMID: 31406346]
  21. Science. 2013 Nov 8;342(6159):750-2 [PMID: 24136358]
  22. Nat Methods. 2012 Mar 18;9(5):473-6 [PMID: 22426492]
  23. Mol Cell. 2019 May 16;74(4):664-673.e5 [PMID: 30922844]
  24. Bioinformatics. 2011 Aug 1;27(15):2149-50 [PMID: 21653521]
  25. Dev Biol. 2010 Mar 15;339(2):258-66 [PMID: 19527704]
  26. Genome Res. 2014 Oct;24(10):1637-49 [PMID: 25015381]
  27. Genome Biol. 2018 Feb 9;19(1):19 [PMID: 29426353]
  28. PLoS Genet. 2014 May 22;10(5):e1004378 [PMID: 24852592]
  29. Nat Rev Mol Cell Biol. 2012 Jun 22;13(7):436-47 [PMID: 22722606]
  30. Cell. 2005 Dec 16;123(6):1025-36 [PMID: 16360033]
  31. Curr Genomics. 2009 Sep;10(6):402-15 [PMID: 20190955]
  32. J Am Stat Assoc. 2014 Jan 1;109(505):48-62 [PMID: 24678133]
  33. Genome Biol. 2015 Jul 24;16:151 [PMID: 26206277]
  34. Nature. 2011 May 22;474(7352):516-20 [PMID: 21602827]
  35. Mol Cell. 2018 Nov 15;72(4):661-672.e4 [PMID: 30392927]
  36. Nature. 2009 Mar 19;458(7236):362-6 [PMID: 19092803]
  37. PLoS Genet. 2012;8(11):e1003036 [PMID: 23166509]
  38. Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):E2514-22 [PMID: 22908247]
  39. Mol Cell. 2005 Jun 10;18(6):735-48 [PMID: 15949447]
  40. Nature. 2006 Aug 17;442(7104):772-8 [PMID: 16862119]

Grants

  1. R21 AI126308/NIAID NIH HHS
  2. 31501054/National Natural Science Foundation of China
  3. R35 GM127084/NIGMS NIH HHS
  4. 31670722/National Natural Science Foundation of China
  5. R01CA204962/Foundation for the National Institutes of Health
  6. 81627801/National Natural Science Foundation of China
  7. 31971151/National Natural Science Foundation of China
  8. R01 CA204962/NCI NIH HHS
  9. 81972909/National Natural Science Foundation of China
  10. 2018YFC1003501/National Basic Research Program of China
  11. R21AI126308/Foundation for the National Institutes of Health
  12. 11374207/National Natural Science Foundation of China

MeSH Term

Animals
Computational Biology
Humans
Nucleosomes
Saccharomyces cerevisiae

Chemicals

Nucleosomes

Word Cloud

Created with Highcharts 10.0.0randomnessoccupancypositionalnucleosomalmethoddomainsnucleosomefindcellsdevelopedpipelinefeaturesorganizationNucleosomeNucleosomalprofilingeffectivedeterminepositioningnucleosomesessentialunderstandrolesgenomicprocessesHoweveracrossgenomerelationshipremainspoorlyunderstoodpresentcomputationalsegmentsprofilequantifiesrelativelevelApplyingpublisheddataaverage���~���3-folddifferencesdegreeregionstypicallyconsidered"well-ordered"wellunexpectedpredominancetwotypesyeastlevelsactuallydiffermaximallyby���~���2-3-folddescribedalsoprocedureonecanestimatesequencingdepthrequiredidentifypositionsevenregionalhighOverallquantitativelycharacterizedomain-levelgenome-wideenablingidentificationotherwiseunknownQ-Nuc:bioinformaticsquantitativeanalysisprofilesGenomestructureHiddenMarkovmodelsPositional

Similar Articles

Cited By