De novo transcriptome analysis and identification of genes associated with immunity, detoxification and energy metabolism from the fat body of the tephritid gall fly, Procecidochares utilis.

Lifang Li, Xi Gao, Mingxian Lan, Yuan Yuan, Zijun Guo, Ping Tang, Mengyue Li, Xianbin Liao, Jiaying Zhu, Zhengyue Li, Min Ye, Guoxing Wu
Author Information
  1. Lifang Li: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China. ORCID
  2. Xi Gao: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  3. Mingxian Lan: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  4. Yuan Yuan: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  5. Zijun Guo: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  6. Ping Tang: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  7. Mengyue Li: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  8. Xianbin Liao: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  9. Jiaying Zhu: Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
  10. Zhengyue Li: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  11. Min Ye: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
  12. Guoxing Wu: State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.

Abstract

The fat body, a multifunctional organ analogous to the liver and fat tissue of vertebrates, plays an important role in insect life cycles. The fat body is involved in protein storage, energy metabolism, elimination of xenobiotics, and production of immunity regulator-like proteins. However, the molecular mechanism of the fat body's physiological functions in the tephritid stem gall-forming fly, Procecidochares utilis, are still unknown. In this study, we performed transcriptome analysis of the fat body of P. utilis using Illumina sequencing technology. In total, 3.71 G of clean reads were obtained and assembled into 30,559 unigenes, with an average length of 539 bp. Among those unigenes, 21,439 (70.16%) were annotated based on sequence similarity to proteins in NCBI's non-redundant protein sequence database (Nr). Sequences were also compared to NCBI's non-redundant nucleotide sequence database (Nt), a manually curated and reviewed protein sequence database (SwissProt), and KEGG and gene ontology annotations were applied to better understand the functions of these unigenes. A comparative analysis was performed to identify unigenes related to detoxification, immunity and energy metabolism. Many unigenes involved in detoxification were identified, including 50 unigenes of putative cytochrome P450s (P450s), 18 of glutathione S-transferases (GSTs), 35 of carboxylesterases (CarEs) and 26 of ATP-binding cassette (ABC) transporters. Many unigenes related to immunity were identified, including 17 putative serpin genes, five peptidoglycan recognition proteins (PGRPs) and four lysozyme genes. In addition, unigenes potentially involved in energy metabolism, including 18 lipase genes, five fatty acid synthase (FAS) genes and six elongases of very long chain fatty acid (ELOVL) genes, were identified. This transcriptome improves our genetic understanding of P. utilis and the identification of a numerous transcripts in the fat body of P. utilis offer a series of valuable molecular resources for future studies on the functions of these genes.

References

  1. Prog Lipid Res. 2006 May;45(3):237-49 [PMID: 16564093]
  2. Cell Metab. 2005 May;1(5):323-30 [PMID: 16054079]
  3. Pestic Biochem Physiol. 2014 Feb;109:1-5 [PMID: 24581378]
  4. Pestic Biochem Physiol. 2015 Jun;121:53-60 [PMID: 26047112]
  5. Nat Commun. 2015 Sep 15;6:8263 [PMID: 26369287]
  6. Sci Rep. 2017 Aug 17;7(1):8655 [PMID: 28819233]
  7. Insect Mol Biol. 2006 Aug;15(4):411-24 [PMID: 16907828]
  8. Int J Mol Sci. 2017 Oct 30;18(11): [PMID: 29084173]
  9. BMC Genomics. 2009 Nov 24;10:553 [PMID: 19930670]
  10. J Insect Sci. 2017 Jan 1;17(2): [PMID: 28365764]
  11. J Microbiol. 2010 Apr;48(2):139-45 [PMID: 20437143]
  12. Annu Rev Pharmacol Toxicol. 2005;45:51-88 [PMID: 15822171]
  13. PLoS Pathog. 2017 Sep 27;13(9):e1006645 [PMID: 28953952]
  14. Insect Biochem Mol Biol. 2013 Sep;43(9):829-38 [PMID: 23811219]
  15. Comp Biochem Physiol C Toxicol Pharmacol. 2016 Feb;180:40-8 [PMID: 26610787]
  16. Genome. 2018 Mar;61(3):167-176 [PMID: 29505281]
  17. Physiol Genomics. 2007 Aug 20;30(3):223-31 [PMID: 17488889]
  18. Pestic Biochem Physiol. 2015 Jul;122:1-7 [PMID: 26071800]
  19. PLoS Pathog. 2009 Aug;5(8):e1000542 [PMID: 19662170]
  20. Proc Natl Acad Sci U S A. 2000 Dec 5;97(25):13772-7 [PMID: 11106397]
  21. BMC Genomics. 2017 Apr 26;18(1):330 [PMID: 28446145]
  22. Oecologia. 1989 Oct;81(2):219-224 [PMID: 28312541]
  23. Insect Biochem Mol Biol. 2015 Jul;62:23-37 [PMID: 25662101]
  24. Int J Mol Sci. 2015 Sep 18;16(9):22606-20 [PMID: 26393579]
  25. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  26. Arch Biochem Biophys. 1995 Aug 1;321(1):13-20 [PMID: 7639512]
  27. Gene. 2017 Jan 5;596:27-44 [PMID: 27697616]
  28. Mol Microbiol. 2006 Jun;60(5):1194-204 [PMID: 16689795]
  29. Dev Comp Immunol. 2018 Sep;86:78-85 [PMID: 29734021]
  30. Parasit Vectors. 2014 Jul 29;7:349 [PMID: 25073980]
  31. Parasit Vectors. 2014 Mar 03;7:92 [PMID: 24589247]
  32. Science. 2014 Mar 7;343(6175):1148-51 [PMID: 24526311]
  33. Comp Biochem Physiol B Biochem Mol Biol. 2009 Dec;154(4):427-34 [PMID: 19737624]
  34. PLoS One. 2012;7(8):e40950 [PMID: 22879883]
  35. Insect Biochem Mol Biol. 2009 Jan;39(1):38-46 [PMID: 18957322]
  36. Mol Phylogenet Evol. 2011 Dec;61(3):924-32 [PMID: 21930223]
  37. PLoS One. 2015 Nov 20;10(11):e0143387 [PMID: 26588704]
  38. Bioinformatics. 2003 Mar 22;19(5):651-2 [PMID: 12651724]
  39. PLoS One. 2018 Aug 23;13(8):e0201679 [PMID: 30138350]
  40. Mol Gen Genet. 1994 Jan;242(2):152-62 [PMID: 8159165]
  41. PLoS One. 2013 Jun 18;8(6):e66533 [PMID: 23824998]
  42. PLoS One. 2017 Apr 14;12(4):e0175417 [PMID: 28410430]
  43. Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W116-20 [PMID: 15980438]
  44. Comp Biochem Physiol Part D Genomics Proteomics. 2015 Sep;15:39-48 [PMID: 26114431]
  45. Insect Mol Biol. 2006 Oct;15(5):645-56 [PMID: 17069638]
  46. Int J Mol Sci. 2016 Jul 22;17(7): [PMID: 27455245]
  47. PLoS One. 2016 May 23;11(5):e0155682 [PMID: 27214257]
  48. Genet Mol Res. 2014 Mar 19;13(2):2857-64 [PMID: 24682983]
  49. Annu Rev Entomol. 1999;44:507-33 [PMID: 9990722]
  50. Science. 2002 Oct 4;298(5591):179-81 [PMID: 12364796]
  51. Insect Biochem Mol Biol. 2008 Dec;38(12):1087-110 [PMID: 18835443]
  52. Insect Mol Biol. 2017 Jun;26(3):343-355 [PMID: 28299835]
  53. Gene. 2006 Aug 1;377:56-64 [PMID: 16713132]
  54. PLoS One. 2016 Jun 22;11(6):e0157656 [PMID: 27331903]
  55. Molecules. 2017 Jan 20;22(1): [PMID: 28117698]
  56. Insect Biochem Mol Biol. 2009 Aug;39(8):547-67 [PMID: 19540341]
  57. Annu Rev Entomol. 2007;52:231-53 [PMID: 16925478]
  58. Pest Manag Sci. 2016 Nov;72(11):2154-2165 [PMID: 26853074]
  59. J Agric Food Chem. 2006 Feb 22;54(4):1289-95 [PMID: 16478250]
  60. Mol Immunol. 2009 Dec;47(2-3):261-9 [PMID: 19828200]
  61. J Mol Biol. 1998 Mar 13;276(5):877-85 [PMID: 9566193]
  62. J Insect Physiol. 2011 Jul;57(7):1033-44 [PMID: 21605564]
  63. Phytochemistry. 2011 Sep;72(13):1497-509 [PMID: 21376356]
  64. BMC Genomics. 2011 Jun 11;12:308 [PMID: 21663692]
  65. Eur J Biochem. 2001 May;268(10):2912-23 [PMID: 11358508]
  66. FASEB J. 2017 Nov;31(11):4770-4782 [PMID: 28705811]
  67. Insect Biochem Mol Biol. 2016 May;72:1-9 [PMID: 26951878]
  68. Mol Biol Evol. 2011 Oct;28(10):2731-9 [PMID: 21546353]
  69. Insects. 2017 May 25;8(2): [PMID: 28587099]
  70. Pestic Biochem Physiol. 2015 Jun;121:107-15 [PMID: 26047118]
  71. Annu Rev Genomics Hum Genet. 2005;6:123-42 [PMID: 16124856]
  72. Nucleic Acids Res. 2006;34(17):4866-77 [PMID: 16973896]
  73. PLoS One. 2014 Jan 08;9(1):e82129 [PMID: 24416137]
  74. Obes Res. 2005 Nov;13(11):1898-904 [PMID: 16339120]
  75. BMC Genomics. 2013 Dec 04;14:850 [PMID: 24304644]
  76. Infect Genet Evol. 2011 Jun;11(4):740-5 [PMID: 21055483]
  77. Insect Biochem Mol Biol. 1994 Mar;24(3):271-81 [PMID: 7517269]
  78. Genome Biol. 2007;8(8):R177 [PMID: 17727709]
  79. Insect Biochem Mol Biol. 2014 Feb;45:89-110 [PMID: 24291285]
  80. PLoS One. 2014 Feb 12;9(2):e88528 [PMID: 24533099]
  81. Comp Biochem Physiol Part D Genomics Proteomics. 2018 Mar;25:1-8 [PMID: 29121518]
  82. Curr Opin Struct Biol. 2007 Aug;17(4):412-8 [PMID: 17723295]
  83. Proc Biol Sci. 2010 Sep 7;277(1694):2683-92 [PMID: 20410035]
  84. Neotrop Entomol. 2017 Dec;46(6):685-693 [PMID: 28326461]
  85. Biochem J. 1997 Dec 15;328 ( Pt 3):929-35 [PMID: 9396740]
  86. PLoS One. 2016 May 06;11(5):e0155254 [PMID: 27153200]
  87. Insect Biochem Mol Biol. 2007 Jul;37(7):655-66 [PMID: 17550822]
  88. Dev Comp Immunol. 2008;32(5):585-95 [PMID: 17981328]
  89. Pest Manag Sci. 2015 Sep;71(9):1281-91 [PMID: 25296621]
  90. PLoS One. 2011;6(12):e29127 [PMID: 22195006]
  91. Bioinformatics. 2005 Sep 15;21(18):3674-6 [PMID: 16081474]
  92. BMC Genomics. 2017 Feb 14;18(1):162 [PMID: 28196471]
  93. Insect Biochem Mol Biol. 2012 May;42(5):360-70 [PMID: 22509523]
  94. Genomics. 2009 Apr;93(4):367-75 [PMID: 19150649]
  95. PLoS One. 2016 Jul 28;11(7):e0160009 [PMID: 27467523]
  96. J Innate Immun. 2017;9(4):333-342 [PMID: 28494453]
  97. Dev Comp Immunol. 2016 Aug;61:60-9 [PMID: 26997372]
  98. Nat Struct Mol Biol. 2004 Oct;11(10):918-26 [PMID: 15452563]
  99. Annu Rev Entomol. 2010;55:207-25 [PMID: 19725772]
  100. Sci Rep. 2017 Jan 10;7:40509 [PMID: 28071706]
  101. BMC Genomics. 2009 Oct 22;10:489 [PMID: 19849829]
  102. J Insect Sci. 2006;6:1-26 [PMID: 19537968]
  103. Proc Biol Sci. 2013 Jan 7;280(1750):20122113 [PMID: 23173204]
  104. Sci Rep. 2015 Mar 10;5:8952 [PMID: 25752830]
  105. Genome Biol. 2010;11(2):R21 [PMID: 20178569]
  106. Protein Eng Des Sel. 2007 Dec;20(12):615-24 [PMID: 18065401]
  107. Pestic Biochem Physiol. 2018 Jun;148:1-7 [PMID: 29891359]
  108. PLoS One. 2011;6(7):e22573 [PMID: 21818341]
  109. Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12657-62 [PMID: 21775671]
  110. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13705-10 [PMID: 12359879]
  111. Protein Pept Lett. 2005 Jan;12(1):3-11 [PMID: 15638797]
  112. Insect Biochem Mol Biol. 2017 Nov;90:71-81 [PMID: 28987647]
  113. Insect Biochem Mol Biol. 2011 Mar;41(3):203-9 [PMID: 21195177]
  114. Science. 2002 Oct 4;298(5591):159-65 [PMID: 12364793]
  115. PLoS One. 2014 Apr 10;9(4):e94809 [PMID: 24722667]
  116. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  117. Dev Comp Immunol. 2018 Oct;87:84-89 [PMID: 29902708]
  118. J Invertebr Pathol. 2015 Nov;132:86-100 [PMID: 26385528]
  119. PLoS One. 2014 Apr 07;9(4):e94470 [PMID: 24710118]
  120. Proc Natl Acad Sci U S A. 2017 Mar 7;114(10):2538-2543 [PMID: 28193870]

MeSH Term

ATP-Binding Cassette Transporters
Animals
Carboxylic Ester Hydrolases
Cytochrome P-450 Enzyme System
Databases, Genetic
Energy Metabolism
Fat Body
Gene Expression Profiling
Gene Ontology
High-Throughput Nucleotide Sequencing
Immunity
Inactivation, Metabolic
Microsatellite Repeats
Phylogeny
Sequence Analysis, DNA
Tephritidae
Transcriptome

Chemicals

ATP-Binding Cassette Transporters
Cytochrome P-450 Enzyme System
Carboxylic Ester Hydrolases

Word Cloud

Created with Highcharts 10.0.0unigenesfatgenesbodyutilisenergymetabolismimmunitysequenceinvolvedproteinproteinsfunctionstranscriptomeanalysisPdatabasedetoxificationidentifiedincludingmoleculartephritidflyProcecidocharesperformedNCBI'snon-redundantrelatedManyputativeP450s18fivefattyacididentificationmultifunctionalorgananalogouslivertissuevertebratesplaysimportantroleinsectlifecyclesstorageeliminationxenobioticsproductionregulator-likeHowevermechanismbody'sphysiologicalstemgall-formingstillunknownstudyusingIlluminasequencingtechnologytotal371Gcleanreadsobtainedassembled30559averagelength539bpAmong214397016%annotatedbasedsimilarityNrSequencesalsocomparednucleotideNtmanuallycuratedreviewedSwissProtKEGGgeneontologyannotationsappliedbetterunderstandcomparativeidentify50cytochromeglutathioneS-transferasesGSTs35carboxylesterasesCarEs26ATP-bindingcassetteABCtransporters17serpinpeptidoglycanrecognitionPGRPsfourlysozymeadditionpotentiallylipasesynthaseFASsixelongaseslongchainELOVLimprovesgeneticunderstandingnumeroustranscriptsofferseriesvaluableresourcesfuturestudiesDenovoassociatedgall

Similar Articles

Cited By