New Circadian Clock Mutants Affecting Temperature Compensation Induced by Targeted Mutagenesis of .

Samarjeet Singh, Astrid Giesecke, Milena Damulewicz, Silvie Fexova, Gabriella M Mazzotta, Ralf Stanewsky, David Dolezel
Author Information
  1. Samarjeet Singh: Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.
  2. Astrid Giesecke: Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
  3. Milena Damulewicz: Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.
  4. Silvie Fexova: Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.
  5. Gabriella M Mazzotta: Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.
  6. Ralf Stanewsky: Institute of Neuro- and Behavioral Biology, Westfälische Wilhelms University, Münster, Germany.
  7. David Dolezel: Institute of Entomology, Biology Centre of Academy of Sciences of the Czech Republic, České Budějovice, Czechia.

Abstract

has served as an excellent genetic model to decipher the molecular basis of the circadian clock. Two key proteins, PERIOD (PER) and TIMELESS (TIM), are particularly well explored and a number of various arrhythmic, slow, and fast clock mutants have been identified in classical genetic screens. Interestingly, the free running period (tau, ) is influenced by temperature in some of these mutants, whereas is temperature-independent in other mutant lines as in wild-type flies. This, so-called "temperature compensation" ability is compromised in the mutant allele ( ), and, as we show here, also in the allele, mapping to the same region of TIM. To test if this region of TIM is indeed important for temperature compensation, we generated a collection of new mutants and mapped functional protein domains involved in the regulation of τ and in general clock function. We developed a protocol for targeted mutagenesis of specific gene regions utilizing the CRISPR/Cas9 technology, followed by behavioral screening. In this pilot study, we identified 20 new mutant alleles with various impairments of temperature compensation. Molecular characterization revealed that the mutations included short in-frame insertions, deletions, or substitutions of a few amino acids resulting from the non-homologous end joining repair process. Our protocol is a fast and cost-efficient systematic approach for functional analysis of protein-coding genes and promoter analysis . Interestingly, several mutations with a strong temperature compensation defect map to one specific region of TIM. Although the exact mechanism of how these mutations affect TIM function is as yet unknown, our analysis suggests they affect a putative nuclear export signal (NES) and phosphorylation sites of TIM. Immunostaining for PER was performed on two TIM mutants that display longer at 25°C and complete arrhythmicity at 28°C. Consistently with the behavioral phenotype, PER immunoreactivity was reduced in circadian clock neurons of flies exposed to elevated temperatures.

Keywords

References

  1. Cell Rep. 2014 Nov 6;9(3):1151-62 [PMID: 25437567]
  2. Genes Dev. 2007 Jun 15;21(12):1506-18 [PMID: 17575052]
  3. Science. 1994 Mar 18;263(5153):1603-6 [PMID: 8128246]
  4. J Biol Rhythms. 2016 Dec;31(6):568-576 [PMID: 27708112]
  5. G3 (Bethesda). 2017 Aug 7;7(8):2637-2649 [PMID: 28620087]
  6. J Biol Rhythms. 2010 Dec;25(6):399-409 [PMID: 21135156]
  7. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11711-5 [PMID: 1465387]
  8. Neuron. 1996 Nov;17(5):921-9 [PMID: 8938124]
  9. Science. 1999 Oct 22;286(5440):766-8 [PMID: 10531060]
  10. Science. 1998 Jun 5;280(5369):1599-603 [PMID: 9616122]
  11. Sci Rep. 2018 Jan 30;8(1):1872 [PMID: 29382842]
  12. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):E2967-76 [PMID: 25002478]
  13. Mol Cell. 2015 Oct 1;60(1):77-88 [PMID: 26431025]
  14. Insect Biochem Mol Biol. 2016 Mar;70:184-90 [PMID: 26826599]
  15. BMC Genomics. 2015 Sep 21;16:720 [PMID: 26391666]
  16. Neuron. 2009 Oct 29;64(2):251-66 [PMID: 19874792]
  17. PLoS Biol. 2007 Jun;5(6):e146 [PMID: 17535111]
  18. J Neurosci. 2002 Jul 15;22(14):5946-54 [PMID: 12122057]
  19. Genetics. 2005 Feb;169(2):751-66 [PMID: 15520259]
  20. J Biol Rhythms. 2015 Jun;30(3):217-27 [PMID: 25994101]
  21. Cell. 1998 Nov 25;95(5):681-92 [PMID: 9845370]
  22. Mol Cell. 2004 Jan 30;13(2):213-23 [PMID: 14759367]
  23. Proc Natl Acad Sci U S A. 1954 Oct;40(10):1018-29 [PMID: 16589583]
  24. Neuron. 1988 Apr;1(2):141-50 [PMID: 3152288]
  25. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2112-6 [PMID: 5002428]
  26. Elife. 2015 Sep 08;4: [PMID: 26349033]
  27. Mol Cell. 2017 Sep 7;67(5):783-798.e20 [PMID: 28886336]
  28. J Neurogenet. 1989 Sep;6(1):1-10 [PMID: 2506319]
  29. Proc Natl Acad Sci U S A. 1994 Mar 15;91(6):2260-4 [PMID: 8134384]
  30. Cell. 1998 Jul 10;94(1):83-95 [PMID: 9674430]
  31. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):16089-94 [PMID: 14657355]
  32. Science. 2007 Jun 29;316(5833):1895-8 [PMID: 17600215]
  33. BMC Neurosci. 2002;3:1 [PMID: 11825337]
  34. Curr Opin Insect Sci. 2015 Feb;7:58-64 [PMID: 32846680]
  35. Genetics. 1998 May;149(1):165-78 [PMID: 9584094]
  36. J Biol Rhythms. 2011 Oct;26(5):464-7 [PMID: 21921300]
  37. Cell. 2004 Feb 20;116(4):603-15 [PMID: 14980226]
  38. Adv Genet. 2012;77:79-123 [PMID: 22902127]
  39. J Biol Rhythms. 2012 Apr;27(2):126-34 [PMID: 22476773]
  40. Cell. 2001 Jun 15;105(6):769-79 [PMID: 11440719]
  41. J Neurosci. 2003 Aug 27;23(21):7810-9 [PMID: 12944510]
  42. Genetics. 2013 Nov;195(3):715-21 [PMID: 24002648]
  43. Science. 2006 Jan 13;311(5758):226-9 [PMID: 16410523]
  44. PLoS Genet. 2015 Feb 12;11(2):e1004974 [PMID: 25674790]
  45. Curr Biol. 2005 Aug 9;15(15):1352-63 [PMID: 16085487]
  46. Front Physiol. 2019 Jul 15;10:891 [PMID: 31379599]
  47. J Biol Rhythms. 2015 Apr;30(2):104-16 [PMID: 25637625]
  48. PLoS Genet. 2019 Jan 31;15(1):e1007953 [PMID: 30703153]
  49. Neuron. 1996 Nov;17(5):911-20 [PMID: 8938123]
  50. Genetics. 2007 Sep;177(1):329-45 [PMID: 17720919]
  51. Curr Opin Insect Sci. 2015 Feb 1;7:51-57 [PMID: 26120561]
  52. J Biol Rhythms. 1994 Winter;9(3-4):189-216 [PMID: 7772790]
  53. J Neurosci. 1997 Jan 15;17(2):676-96 [PMID: 8987790]
  54. Science. 2004 Jun 4;304(5676):1503-6 [PMID: 15178801]
  55. FEBS Lett. 2007 Dec 22;581(30):5759-64 [PMID: 18037381]
  56. J Neurosci. 2011 Jul 6;31(27):9982-90 [PMID: 21734289]
  57. G3 (Bethesda). 2016 Dec 7;6(12):4227-4238 [PMID: 27784754]
  58. J Neurosci. 2010 Sep 22;30(38):12664-75 [PMID: 20861372]
  59. Genetics. 2011 Jul;188(3):591-600 [PMID: 21515571]
  60. Cell. 2011 Apr 29;145(3):357-70 [PMID: 21514639]
  61. Neuron. 2000 May;26(2):505-14 [PMID: 10839368]
  62. Science. 1999 Jul 23;285(5427):553-6 [PMID: 10417378]
  63. PLoS Biol. 2009 Apr 28;7(4):e3 [PMID: 19402744]
  64. Methods Enzymol. 2005;393:35-60 [PMID: 15817286]
  65. Neuron. 1999 Sep;24(1):219-30 [PMID: 10677039]
  66. Science. 2005 Apr 15;308(5720):414-5 [PMID: 15831759]
  67. Traffic. 2008 Dec;9(12):2053-62 [PMID: 18817528]
  68. Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):1660-5 [PMID: 26811445]
  69. PLoS Genet. 2007 Apr 6;3(4):e54 [PMID: 17411344]
  70. Nature. 1990 Feb 8;343(6258):536-40 [PMID: 2105471]
  71. Adv Genet. 2011;74:141-73 [PMID: 21924977]
  72. Proc Natl Acad Sci U S A. 1957 Sep 15;43(9):804-11 [PMID: 16590089]
  73. Genetics. 2000 Oct;156(2):665-75 [PMID: 11014814]
  74. Mol Cell Biol. 1999 Jun;19(6):4343-54 [PMID: 10330175]
  75. Neuron. 1992 Sep;9(3):575-81 [PMID: 1524831]

Word Cloud

Created with Highcharts 10.0.0TIMclocktemperaturemutantscompensationcircadianPERmutantregionmutationsanalysisgeneticvariousfastidentifiedInterestinglyfliesallelenewfunctionalfunctionprotocolspecificbehavioralscreeninggenesaffectservedexcellentmodeldeciphermolecularbasisTwokeyproteinsPERIODTIMELESSparticularlywellexplorednumberarrhythmicslowclassicalscreensfreerunningperiodtauinfluencedwhereastemperature-independentlineswild-typeso-called"temperaturecompensation"abilitycompromisedshowalsomappingtestindeedimportantgeneratedcollectionmappedproteindomainsinvolvedregulationτgeneraldevelopedtargetedmutagenesisgeneregionsutilizingCRISPR/Cas9technologyfollowedpilotstudy20allelesimpairmentsMolecularcharacterizationrevealedincludedshortin-frameinsertionsdeletionssubstitutionsaminoacidsresultingnon-homologousendjoiningrepairprocesscost-efficientsystematicapproachprotein-codingpromoterseveralstrongdefectmaponeAlthoughexactmechanismyetunknownsuggestsputativenuclearexportsignalNESphosphorylationsitesImmunostainingperformedtwodisplaylonger25°Ccompletearrhythmicity28°CConsistentlyphenotypeimmunoreactivityreducedneuronsexposedelevatedtemperaturesNewCircadianClockMutantsAffectingTemperatureCompensationInducedTargetedMutagenesisCRISPR-CAS9Drosophilamelanogastercandidatereversegenetics

Similar Articles

Cited By