Assessment of fighting ability in the vocal cichlid in face of incongruent audiovisual information.

M Clara P Amorim, Paulo J Fonseca, Nicolas Mathevon, Marilyn Beauchaud
Author Information
  1. M Clara P Amorim: MARE-Marine and Environmental Sciences Centre, ISPA-Instituto Universitário, 1149-041 Lisbon, Portugal mcamorim@fc.ul.pt. ORCID
  2. Paulo J Fonseca: Departamento de Biologia Animal and cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal. ORCID
  3. Nicolas Mathevon: Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S 1028, 42023 Saint-Etienne, France. ORCID
  4. Marilyn Beauchaud: Equipe de Neuro-Ethologie Sensorielle ENES/CRNL, University of Lyon/Saint-Etienne, CNRS UMR5292, INSERM UMR_S 1028, 42023 Saint-Etienne, France. ORCID

Abstract

Information transfer between individuals typically depends on multiple sensory channels. Yet, how multi-sensory inputs shape adaptive behavioural decisions remains largely unexplored. We tested the relative importance of audio and visual sensory modalities in opponent size assessment in the vocal cichlid fish, , by playing back mismatched agonistic sounds mimicking larger or smaller opponents during fights of size-matched males. Trials consisted in three 5-min periods: PRE (visual), PBK (acoustic+visual) and POST (visual). During PBK agonistic sounds of smaller (high frequency or low amplitude) or larger (low frequency or high amplitude) males were played back interactively. As a control, we used white noise and silence. We show that sound frequency but not amplitude affects aggression, indicating that spectral cues reliably signal fighting ability. In addition, males reacted to the contrasting audio-visual information by giving prevalence to the sensory channel signalling a larger opponent. Our results suggest that fish can compare the relevance of information provided by different sensory inputs to make behavioural decisions during fights, which ultimately contributes to their individual fitness. These findings have implications for our understanding of the role of multi-sensory inputs in shaping behavioural output during conflicts in vertebrates.

Keywords

References

  1. J Neurophysiol. 2011 Dec;106(6):2896-909 [PMID: 21880944]
  2. Z Tierpsychol. 1974 Dec;35(5):508-17 [PMID: 4477430]
  3. Proc Biol Sci. 2012 Jul 7;279(1738):2698-704 [PMID: 22418254]
  4. Neurosci Lett. 2007 May 1;417(2):107-11 [PMID: 17408855]
  5. J Exp Biol. 2011 Mar 1;214(Pt 5):815-20 [PMID: 21307068]
  6. J Acoust Soc Am. 2005 Jan;117(1):305-18 [PMID: 15704423]
  7. Front Neural Circuits. 2019 Feb 18;13:7 [PMID: 30833888]
  8. J Exp Biol. 2015 Oct;218(Pt 20):3284-94 [PMID: 26491195]
  9. Science. 2013 Jul 19;341(6143):273-4 [PMID: 23744778]
  10. J Comp Neurol. 2011 Dec 15;519(18):3599-639 [PMID: 21800319]
  11. J Neurophysiol. 2011 Dec;106(6):3091-101 [PMID: 21957224]
  12. Nat Commun. 2016 Jun 06;7:11543 [PMID: 27265526]
  13. Curr Opin Neurobiol. 2014 Apr;25:38-46 [PMID: 24709599]
  14. J Chem Ecol. 2016 Feb;42(2):173-82 [PMID: 26846373]
  15. Nat Rev Neurosci. 2013 Jun;14(6):429-42 [PMID: 23686172]
  16. Trends Cogn Sci. 2003 Oct;7(10):460-7 [PMID: 14550494]
  17. Nature. 1976 Dec 23-30;264(5588):746-8 [PMID: 1012311]
  18. Curr Biol. 2010 Jan 12;20(1):19-24 [PMID: 20036538]
  19. PeerJ. 2017 Aug 1;5:e3643 [PMID: 28785523]
  20. Am Nat. 2005 Aug;166(2):231-45 [PMID: 16032576]
  21. Curr Biol. 2015 Jan 19;25(2):231-235 [PMID: 25544613]
  22. J Fish Biol. 2012 Apr;80(4):752-66 [PMID: 22471797]
  23. PLoS Biol. 2015 Feb 24;13(2):e1002075 [PMID: 25710476]
  24. Curr Opin Behav Sci. 2015 Dec 1;6:115-124 [PMID: 26693169]
  25. Rev Sci Instrum. 2012 May;83(5):055007 [PMID: 22667648]
  26. Behav Res Methods Instrum Comput. 2000 Aug;32(3):446-9 [PMID: 11029818]
  27. Hear Res. 2002 Jul;169(1-2):36-46 [PMID: 12121738]
  28. Proc Natl Acad Sci U S A. 2016 Jul 5;113(27):7638-43 [PMID: 27313211]
  29. Anim Cogn. 2016 Nov;19(6):1173-1181 [PMID: 27557952]
  30. J Exp Biol. 2005 Feb;208(Pt 4):595-601 [PMID: 15695752]
  31. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):577-80 [PMID: 12515862]
  32. Sci Rep. 2017 Mar 03;7:43665 [PMID: 28257127]
  33. J Acoust Soc Am. 2008 Aug;124(2):1332-8 [PMID: 18681618]
  34. Nature. 2002 Jan 24;415(6870):429-33 [PMID: 11807554]
  35. J Exp Biol. 2016 Apr 15;219(Pt 8):1122-9 [PMID: 26896547]
  36. Ethology. 2019 Aug;125(8):503-515 [PMID: 31341343]

Word Cloud

Created with Highcharts 10.0.0sensoryinputsbehaviouralvisuallargermalesfrequencyamplitudeinformationmulti-sensorydecisionsopponentassessmentvocalcichlidfishbackagonisticsoundssmallerfightsPBKhighlowfightingabilityInformationtransferindividualstypicallydependsmultiplechannelsYetshapeadaptiveremainslargelyunexploredtestedrelativeimportanceaudiomodalitiessizeplayingmismatchedmimickingopponentssize-matchedTrialsconsistedthree5-minperiods:PREacoustic+visualPOSTplayedinteractivelycontrolusedwhitenoisesilenceshowsoundaffectsaggressionindicatingspectralcuesreliablysignaladditionreactedcontrastingaudio-visualgivingprevalencechannelsignallingresultssuggestcancomparerelevanceprovideddifferentmakeultimatelycontributesindividualfitnessfindingsimplicationsunderstandingroleshapingoutputconflictsvertebratesAssessmentfaceincongruentaudiovisualAdaptiveframeworkCichlidsIncongruentsignalsMultimodalcommunicationOpponentReceiverpsychology

Similar Articles

Cited By

No available data.