Ultrastable Au nanoparticles on titania through an encapsulation strategy under oxidative atmosphere.

Shaofeng Liu, Wei Xu, Yiming Niu, Bingsen Zhang, Lirong Zheng, Wei Liu, Lin Li, Junhu Wang
Author Information
  1. Shaofeng Liu: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
  2. Wei Xu: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  3. Yiming Niu: Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
  4. Bingsen Zhang: Shenyang National Laboratory of Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China. ORCID
  5. Lirong Zheng: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  6. Wei Liu: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
  7. Lin Li: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
  8. Junhu Wang: State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China. wangjh@dicp.ac.cn. ORCID

Abstract

Supported gold catalysts play a crucial role in the chemical industry; however, their poor on-stream stability because of the sintering of the gold nanoparticles restricts their practical application. The strong metal-support interaction (SMSI), an important concept in heterogeneous catalysis, may be applied to construct the structure of catalysts and, hence, improve their reactivity and stability. Here we report an ultrastable Au nanocatalyst after calcination at 800 °C, in which Au nanoparticles are encapsulated by a permeable TiO thin layer induced by melamine under oxidative atmosphere. Owning to the formed TiO overlayer, the resulting Au catalyst is resistant to sintering and exhibits excellent activity and stability for catalytic CO oxidation. Furthermore, this special strategy can be extended to colloidal Au nanoparticles supported on TiO and commercial gold catalyst denoted as RR2Ti, providing a universal way to engineer and develop highly stable supported Au catalysts with tunable activity.

References

  1. J Am Chem Soc. 2016 Mar 2;138(8):2629-37 [PMID: 26828123]
  2. Science. 2006 Jul 21;313(5785):332-4 [PMID: 16857934]
  3. Science. 2012 Mar 9;335(6073):1205-8 [PMID: 22403386]
  4. J Am Chem Soc. 2012 Jun 20;134(24):10251-8 [PMID: 22612449]
  5. J Am Chem Soc. 2006 Nov 8;128(44):14278-80 [PMID: 17076500]
  6. Angew Chem Int Ed Engl. 2017 Apr 10;56(16):4494-4498 [PMID: 28328073]
  7. Science. 2004 Oct 8;306(5694):252-5 [PMID: 15331772]
  8. J Am Chem Soc. 2016 Dec 14;138(49):16130-16139 [PMID: 27960312]
  9. Angew Chem Int Ed Engl. 2016 Aug 26;55(36):10606-11 [PMID: 27461145]
  10. J Am Chem Soc. 2019 Feb 20;141(7):2975-2983 [PMID: 30677301]
  11. Angew Chem Int Ed Engl. 2006 Dec 11;45(48):8224-7 [PMID: 17109458]
  12. J Am Chem Soc. 2016 Aug 3;138(30):9572-80 [PMID: 27392203]
  13. Nat Commun. 2019 Apr 8;10(1):1611 [PMID: 30962455]
  14. Phys Chem Chem Phys. 2010 Nov 7;12(41):13499-510 [PMID: 20820585]
  15. Science. 2014 Aug 1;345(6196):546-50 [PMID: 25082699]
  16. Nano Lett. 2016 Jul 13;16(7):4528-34 [PMID: 27280326]
  17. Nat Commun. 2013;4:2481 [PMID: 24064958]
  18. J Am Chem Soc. 2018 Oct 24;140(42):13808-13816 [PMID: 30281304]
  19. Angew Chem Int Ed Engl. 2010 May 3;49(20):3504-7 [PMID: 20391442]
  20. Acc Chem Res. 2013 Aug 20;46(8):1673-81 [PMID: 23252628]
  21. Nat Chem. 2017 Feb;9(2):120-127 [PMID: 28282057]
  22. J Phys Chem B. 2005 Jan 20;109(2):944-51 [PMID: 16866463]
  23. J Am Chem Soc. 2016 Nov 9;138(44):14720-14726 [PMID: 27779867]
  24. Nat Chem. 2009 Oct;1(7):584 [PMID: 21378939]
  25. J Am Chem Soc. 2016 Jan 13;138(1):56-9 [PMID: 26669943]
  26. Acc Chem Res. 2013 Aug 20;46(8):1671-2 [PMID: 23957601]
  27. Nature. 2005 Oct 20;437(7062):1098-9 [PMID: 16237427]
  28. Science. 2011 Aug 5;333(6043):736-9 [PMID: 21817048]
  29. J Am Chem Soc. 2002 Mar 13;124(10):2312-7 [PMID: 11878986]
  30. Sci Adv. 2016 Jul 20;2(7):e1600319 [PMID: 27453942]
  31. Nat Commun. 2018 Oct 26;9(1):4459 [PMID: 30367060]
  32. Science. 2003 Mar 14;299(5613):1688-91 [PMID: 12637733]
  33. Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10761-10765 [PMID: 28691396]
  34. Sci Adv. 2017 Oct 13;3(10):e1700231 [PMID: 29043293]
  35. Angew Chem Int Ed Engl. 2012 Jun 11;51(24):5929-34 [PMID: 22517504]
  36. Science. 1981 Mar 13;211(4487):1121-5 [PMID: 17755135]
  37. Angew Chem Int Ed Engl. 2011 Oct 17;50(43):10064-94 [PMID: 21960461]
  38. Angew Chem Int Ed Engl. 2017 Aug 7;56(33):9747-9751 [PMID: 28503914]
  39. Science. 2012 May 18;336(6083):893-7 [PMID: 22517324]
  40. J Am Chem Soc. 2013 Aug 14;135(32):11849-60 [PMID: 23865622]

Word Cloud

Created with Highcharts 10.0.0AunanoparticlesgoldcatalystsstabilityTiOsinteringoxidativeatmospherecatalystactivitystrategysupportedSupportedplaycrucialrolechemicalindustryhoweverpooron-streamrestrictspracticalapplicationstrongmetal-supportinteractionSMSIimportantconceptheterogeneouscatalysismayappliedconstructstructurehenceimprovereactivityreportultrastablenanocatalystcalcination800 °CencapsulatedpermeablethinlayerinducedmelamineOwningformedoverlayerresultingresistantexhibitsexcellentcatalyticCOoxidationFurthermorespecialcanextendedcolloidalcommercialdenotedRR2TiprovidinguniversalwayengineerdevelophighlystabletunableUltrastabletitaniaencapsulation

Similar Articles

Cited By