Peroxiredoxin 5 Silencing Sensitizes Dopaminergic Neuronal Cells to Rotenone via DNA Damage-Triggered ATM/p53/PUMA Signaling-Mediated Apoptosis.

Mei-Jen Wang, Hsin-Yi Huang, Tsung-Lang Chiu, Hui-Fen Chang, Hsin-Rong Wu
Author Information
  1. Mei-Jen Wang: Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
  2. Hsin-Yi Huang: Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
  3. Tsung-Lang Chiu: Division of Neurosurgery, Neuro-Medical Scientific Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
  4. Hui-Fen Chang: Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.
  5. Hsin-Rong Wu: Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan.

Abstract

Peroxiredoxins (Prxs) are a family of thioredoxin peroxidases. Accumulating evidence suggests that changes in the expression of Prxs may be involved in neurodegenerative diseases pathology. However, the expression and function of Prxs in Parkinson's disease (PD) remains unclear. Here, we showed that Prx5 was the most downregulated of the six Prx subtypes in dopaminergic (DA) neurons in rotenone-induced cellular and rat models of PD, suggesting possible roles in regulating their survival. Depletion of Prx5 sensitized SH-SY5Y DA neuronal cells to rotenone-induced apoptosis. The extent of mitochondrial membrane potential collapse, cytochrome c release, and caspase activation was increased by Prx5 loss. Furthermore, Prx5 knockdown enhanced the induction of PUMA by rotenone through a p53-dependent mechanism. Using RNA interference approaches, we demonstrated that the p53/PUMA signaling was essential for Prx5 silencing-exacerbated mitochondria-driven apoptosis. Additionally, downregulation of Prx5 augmented rotenone-induced DNA damage manifested as induction of phosphorylated histone H2AX (γ-H2AX) and activation of ataxia telangiectasia mutated (ATM) kinase. The pharmacological inactivation of ATM revealed that ATM was integral to p53 activation by DNA damage. These findings provided a novel link between Prx5 and DNA damage-triggered ATM/p53/PUMA signaling in a rotenone-induced PD model. Thus, Prx5 might play an important role in protection against rotenone-induced DA neurodegeneration.

Keywords

References

  1. Neuron. 2014 Jul 16;83(2):266-282 [PMID: 25033177]
  2. Free Radic Biol Med. 2005 Jun 15;38(12):1543-52 [PMID: 15917183]
  3. Redox Rep. 2002;7(3):123-30 [PMID: 12189041]
  4. J Neurochem. 2006 Mar;96(5):1213-26 [PMID: 16478523]
  5. In Vivo. 2008 May-Jun;22(3):305-9 [PMID: 18610740]
  6. Free Radic Biol Med. 2015 Dec;89:567-80 [PMID: 26454081]
  7. Toxicol Lett. 2013 May 23;219(2):93-8 [PMID: 23500530]
  8. J Neural Transm Suppl. 2001;(61):223-35 [PMID: 11771746]
  9. J Cell Sci. 2002 Apr 15;115(Pt 8):1567-74 [PMID: 11950875]
  10. Hum Mol Genet. 2009 Apr 15;18(R1):R48-59 [PMID: 19297401]
  11. Antioxid Redox Signal. 2012 May 1;16(9):883-95 [PMID: 21619488]
  12. Parkinsonism Relat Disord. 2003 Aug;9 Suppl 2:S59-64 [PMID: 12915069]
  13. J Biol Chem. 2003 Feb 21;278(8):6371-83 [PMID: 12475980]
  14. Cell Death Differ. 2006 Apr;13(4):551-63 [PMID: 16273081]
  15. J Cell Physiol. 2002 Jul;192(1):1-15 [PMID: 12115731]
  16. J Neurosci. 2011 Jan 5;31(1):247-61 [PMID: 21209210]
  17. Mol Neurodegener. 2011 Jan 06;6(1):2 [PMID: 21211034]
  18. Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12157-62 [PMID: 25097261]
  19. Eur J Biochem. 1999 Mar;260(2):336-46 [PMID: 10095767]
  20. FEBS Lett. 2004 Aug 13;572(1-3):75-9 [PMID: 15304327]
  21. J Neurochem. 2016 Sep;138(5):746-57 [PMID: 27317935]
  22. J Neurosci. 2007 Nov 21;27(47):12989-99 [PMID: 18032672]
  23. Proc Natl Acad Sci U S A. 2007 May 8;104(19):8161-6 [PMID: 17483459]
  24. J Neurosci. 2007 Nov 7;27(45):12198-210 [PMID: 17989286]
  25. Transl Oncol. 2019 Mar;12(3):462-474 [PMID: 30583289]
  26. J Comp Neurol. 2012 Feb 1;520(2):258-80 [PMID: 21674491]
  27. J Biochem. 2014 Aug;156(2):85-95 [PMID: 24682951]
  28. Eur J Neurol. 2012 Jun;19(6):e56 [PMID: 22577753]
  29. Antioxid Redox Signal. 2011 Aug 1;15(3):817-29 [PMID: 20977338]
  30. Antioxid Redox Signal. 2005 May-Jun;7(5-6):619-26 [PMID: 15890005]
  31. Free Radic Biol Med. 2016 Jan;90:184-94 [PMID: 26582373]
  32. Nat Rev Neurol. 2013 Aug;9(8):445-54 [PMID: 23857047]
  33. Free Radic Biol Med. 2004 Jan 1;36(1):65-77 [PMID: 14732291]
  34. Cell Death Dis. 2018 Jul 26;9(8):818 [PMID: 30050065]
  35. Subcell Biochem. 2007;44:357-74 [PMID: 18084903]
  36. Stem Cells. 2015 May;33(5):1601-17 [PMID: 25641682]
  37. Prog Neurobiol. 2014 Jan;112:24-49 [PMID: 24211851]
  38. Oncogene. 2008 Dec;27 Suppl 1:S71-83 [PMID: 19641508]
  39. Int J Mol Sci. 2018 Oct 12;19(10): [PMID: 30322030]
  40. Aging Dis. 2018 Aug 1;9(4):590-604 [PMID: 30090649]
  41. FEBS Lett. 2010 Sep 10;584(17):3717-24 [PMID: 20493860]
  42. Antioxid Redox Signal. 2017 Oct 10;27(11):715-726 [PMID: 28358580]
  43. J Neurosci. 2001 Jul 15;21(14):5017-26 [PMID: 11438577]
  44. Am J Pathol. 2004 Nov;165(5):1701-18 [PMID: 15509539]
  45. J Neurochem. 2007 Mar;100(6):1469-79 [PMID: 17241123]
  46. Free Radic Biol Med. 2008 Sep 1;45(5):667-78 [PMID: 18588971]
  47. Neurochem Int. 2013 Sep;63(3):133-40 [PMID: 23714208]
  48. Neurobiol Aging. 2007 Aug;28(8):1258-69 [PMID: 16839644]
  49. J Neurochem. 2003 Aug;86(4):860-8 [PMID: 12887684]
  50. J Neurochem. 2013 May;125(3):473-85 [PMID: 23216451]
  51. J Biol Chem. 2006 Dec 22;281(51):39550-60 [PMID: 17060322]
  52. Apoptosis. 2006 Jun;11(6):955-66 [PMID: 16544096]
  53. Cell Cycle. 2009 Sep 1;8(17):2692-6 [PMID: 19652530]
  54. J Neurochem. 2015 Aug;134(4):668-76 [PMID: 25991017]
  55. Free Radic Biol Med. 2003 Apr 1;34(7):862-72 [PMID: 12654475]
  56. Arch Biochem Biophys. 2006 May 15;449(1-2):143-56 [PMID: 16600170]
  57. Mol Neurodegener. 2008 Dec 29;3:21 [PMID: 19114014]
  58. Trends Mol Med. 2010 Nov;16(11):528-36 [PMID: 20932800]
  59. J Biol Chem. 2008 Apr 11;283(15):9986-98 [PMID: 18250162]
  60. Neurobiol Dis. 2009 Mar;33(3):429-35 [PMID: 19110057]
  61. Mol Cell. 2005 Feb 18;17(4):525-35 [PMID: 15721256]
  62. Proteomics. 2004 Dec;4(12):3943-52 [PMID: 15526345]
  63. Arch Biochem Biophys. 2007 Dec 15;468(2):159-66 [PMID: 17976513]
  64. Crit Rev Toxicol. 2012 Aug;42(7):613-32 [PMID: 22574684]
  65. Cereb Cortex. 2009 Jun;19(6):1273-93 [PMID: 18820287]
  66. Neuron. 2007 Jul 5;55(1):37-52 [PMID: 17610816]
  67. J Neurosci. 2004 Nov 3;24(44):10003-12 [PMID: 15525786]
  68. Free Radic Biol Med. 2015 Jul;84:215-226 [PMID: 25772011]
  69. Front Aging Neurosci. 2018 Apr 17;10:109 [PMID: 29719505]
  70. J Transl Med. 2019 Oct 2;17(1):332 [PMID: 31578139]
  71. Mol Med. 2015 Feb 13;21:98-108 [PMID: 25715249]
  72. Oncogene. 2007 Dec 10;26(56):7741-8 [PMID: 18066086]
  73. Am J Pathol. 1999 May;154(5):1423-9 [PMID: 10329595]
  74. Cell. 2009 May 15;137(4):609-22 [PMID: 19450511]
  75. J Neurol Sci. 2012 Nov 15;322(1-2):254-62 [PMID: 22669122]
  76. Free Radic Res. 2013 Oct;47(10):836-46 [PMID: 23937564]
  77. Neurosci Lett. 2013 Aug 26;548:50-5 [PMID: 23774475]
  78. FEBS J. 2006 Jun;273(12):2607-17 [PMID: 16817890]
  79. Neurochem Res. 2015 Apr;40(4):837-42 [PMID: 25813492]
  80. FASEB J. 2003 Jul;17(10):1195-214 [PMID: 12832285]

Grants

  1. TCRD105-33 and TCRD106-41/Hualien Tzu Chi Hospital, Taiwan
  2. MOST 105-2320-B-303-002-MY3/Ministry of Science and Technology, Taiwan
  3. TCMFRP-106-01-02/Buddhist Tzu Chi Medical Foundation, Taiwan

MeSH Term

Animals
Ataxia Telangiectasia Mutated Proteins
Cell Survival
Cells, Cultured
DNA Damage
Disease Models, Animal
Dopaminergic Neurons
Drug Synergism
Gene Knockdown Techniques
Humans
Male
Parkinson Disease
Peroxiredoxins
Primary Cell Culture
Rats
Rotenone
Signal Transduction
Tumor Suppressor Protein p53
Tumor Suppressor Proteins

Chemicals

Tumor Suppressor Protein p53
Tumor Suppressor Proteins
Rotenone
PRDX5 protein, human
Peroxiredoxins
Prdx5 protein, rat
Ataxia Telangiectasia Mutated Proteins

Word Cloud

Created with Highcharts 10.0.0Prx5rotenone-inducedDNAATMPrxsPDDAactivationdamageexpressiondiseasedopaminergicneuronsapoptosisinductionPUMArotenonesignalingγ-H2AXATM/p53/PUMA5PeroxiredoxinsfamilythioredoxinperoxidasesAccumulatingevidencesuggestschangesmayinvolvedneurodegenerativediseasespathologyHoweverfunctionParkinson'sremainsunclearshoweddownregulatedsixPrxsubtypescellularratmodelssuggestingpossiblerolesregulatingsurvivalDepletionsensitizedSH-SY5YneuronalcellsextentmitochondrialmembranepotentialcollapsecytochromecreleasecaspaseincreasedlossFurthermoreknockdownenhancedp53-dependentmechanismUsingRNAinterferenceapproachesdemonstratedp53/PUMAessentialsilencing-exacerbatedmitochondria-drivenAdditionallydownregulationaugmentedmanifestedphosphorylatedhistoneH2AXataxiatelangiectasiamutatedkinasepharmacologicalinactivationrevealedintegralp53findingsprovidednovellinkdamage-triggeredmodelThusmightplayimportantroleprotectionneurodegenerationPeroxiredoxinSilencingSensitizesDopaminergicNeuronalCellsRotenoneviaDamage-TriggeredSignaling-MediatedApoptosisP53Parkinson’speroxiredoxin

Similar Articles

Cited By