Application of Graphene-Based Materials for Detection of Nitrate and Nitrite in Water-A Review.

Daoliang Li, Tan Wang, Zhen Li, Xianbao Xu, Cong Wang, Yanqing Duan
Author Information
  1. Daoliang Li: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
  2. Tan Wang: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
  3. Zhen Li: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
  4. Xianbao Xu: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
  5. Cong Wang: College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China.
  6. Yanqing Duan: Business school, University of Bedfordshire, Luton LU1 3BE, UK. ORCID

Abstract

Nitrite and nitrate are widely found in various water environments but the potential toxicity of nitrite and nitrate poses a great threat to human health. Recently, many methods have been developed to detect nitrate and nitrite in water. One of them is to use graphene-based materials. Graphene is a two-dimensional carbon nano-material with sp hybrid orbital, which has a large surface area and excellent conductivity and electron transfer ability. It is widely used for modifying electrodes for electrochemical sensors. Graphene based electrochemical sensors have the advantages of being low cost, effective and efficient for nitrite and nitrate detection. This paper reviews the application of graphene-based nanomaterials for electrochemical detection of nitrate and nitrite in water. The properties and advantages of the electrodes were modified by graphene, graphene oxide and reduced graphene oxide nanocomposite in the development of nitrite sensors are discussed in detail. Based on the review, the paper summarizes the working conditions and performance of different sensors, including working potential, pH, detection range, detection limit, sensitivity, reproducibility, repeatability and long-term stability. Furthermore, the challenges and suggestions for future research on the application of graphene-based nanocomposite electrochemical sensors for nitrite detection are also highlighted.

Keywords

References

  1. Biosens Bioelectron. 2012 Apr 15;34(1):70-6 [PMID: 22341755]
  2. Talanta. 2015 Nov 1;144:908-14 [PMID: 26452907]
  3. Talanta. 2017 Dec 1;175:21-29 [PMID: 28841981]
  4. Anal Chem. 2018 Aug 21;90(16):9997-10000 [PMID: 30045620]
  5. J Am Chem Soc. 2009 May 13;131(18):6362-3 [PMID: 19368386]
  6. J Sep Sci. 2018 Nov;41(21):4075-4082 [PMID: 30168258]
  7. Mar Pollut Bull. 2006 Oct;52(10):1249-59 [PMID: 16631809]
  8. Biosens Bioelectron. 2015 Feb 15;64:373-85 [PMID: 25261843]
  9. Talanta. 2015 Nov 1;144:769-77 [PMID: 26452889]
  10. Talanta. 2016 Apr 1;150:302-9 [PMID: 26838412]
  11. Sensors (Basel). 2018 Aug 31;18(9):null [PMID: 30200343]
  12. Sensors (Basel). 2018 Jun 21;18(7):null [PMID: 29933603]
  13. Nanoscale. 2015 Jan 28;7(4):1250-69 [PMID: 25502117]
  14. ACS Appl Mater Interfaces. 2016 Feb 3;8(4):2713-22 [PMID: 26757200]
  15. Int J Environ Res Public Health. 2019 May 19;16(10): [PMID: 31109129]
  16. Food Chem. 2019 Feb 15;274:8-15 [PMID: 30373012]
  17. J Hazard Mater. 2017 Feb 15;324(Pt B):762-772 [PMID: 27894754]
  18. Anal Chim Acta. 2018 Dec 28;1043:28-34 [PMID: 30392666]
  19. Talanta. 2016 Aug 1;155:329-35 [PMID: 27216690]
  20. J Colloid Interface Sci. 2018 Apr 15;516:67-75 [PMID: 29408145]
  21. Food Chem. 2018 Feb 1;240:648-654 [PMID: 28946324]
  22. Biosens Bioelectron. 2019 Sep 15;141:111384 [PMID: 31195196]
  23. J Colloid Interface Sci. 2016 Sep 15;478:413-20 [PMID: 27344354]
  24. Talanta. 2001 Jun 21;54(5):785-803 [PMID: 18968301]
  25. Analyst. 2011 Nov 7;136(21):4563-9 [PMID: 21912778]
  26. Mikrochim Acta. 2019 Aug 14;186(9):624 [PMID: 31414247]
  27. Mater Sci Eng C Mater Biol Appl. 2018 Apr 1;85:97-106 [PMID: 29407162]
  28. Chem Commun (Camb). 2010 Mar 7;46(9):1500-2 [PMID: 20162161]
  29. Biosens Bioelectron. 2011 Jul 15;26(11):4436-41 [PMID: 21612908]
  30. Molecules. 2017 Nov 24;22(12): [PMID: 29186757]
  31. Sensors (Basel). 2018 Oct 10;18(10):null [PMID: 30309005]
  32. Sensors (Basel). 2017 Sep 21;17(10): [PMID: 28934118]
  33. Talanta. 2016 Oct 1;159:34-39 [PMID: 27474276]
  34. Talanta. 2017 Apr 1;165:709-720 [PMID: 28153321]
  35. Analyst. 2016 Jul 21;141(14):4349-58 [PMID: 27181605]
  36. Chemosphere. 2005 Mar;58(9):1255-67 [PMID: 15667845]

Grants

  1. 61571444/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0nitritenitrategrapheneelectrochemicalsensorsdetectionoxidewatergraphene-basedNitritewidelypotentialGrapheneelectrodesadvantagespaperapplicationreducednanocompositeworkingfoundvariousenvironmentstoxicityposesgreatthreathumanhealthRecentlymanymethodsdevelopeddetectOneusematerialstwo-dimensionalcarbonnano-materialsphybridorbitallargesurfaceareaexcellentconductivityelectrontransferabilityusedmodifyingbasedlowcosteffectiveefficientreviewsnanomaterialspropertiesmodifieddevelopmentdiscusseddetailBasedreviewsummarizesconditionsperformancedifferentincludingpHrangelimitsensitivityreproducibilityrepeatabilitylong-termstabilityFurthermorechallengessuggestionsfutureresearchalsohighlightedApplicationGraphene-BasedMaterialsDetectionNitrateWater-AReviewsensing

Similar Articles

Cited By