Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy.

Vytor P Oliveira, Bruna L Marcial, Francisco B C Machado, Elfi Kraka
Author Information
  1. Vytor P Oliveira: Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil. ORCID
  2. Bruna L Marcial: Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil. ORCID
  3. Francisco B C Machado: Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil. ORCID
  4. Elfi Kraka: Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA. ORCID

Abstract

Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal-halogen dimers trans-M(Y)(NCHX-3) with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NCHX-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal-halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal-halogen-bonded materials.

Keywords

References

  1. J Chem Phys. 2012 Aug 28;137(8):084114 [PMID: 22938225]
  2. Chemphyschem. 2019 Aug 5;20(15):1967-1977 [PMID: 31063616]
  3. J Chem Theory Comput. 2011 Mar 8;7(3):625-632 [PMID: 21516178]
  4. Molecules. 2019 Jul 27;24(15):null [PMID: 31357615]
  5. J Am Chem Soc. 2013 Feb 27;135(8):3262-75 [PMID: 23384185]
  6. J Comput Chem. 2018 Oct 5;39(26):2183-2195 [PMID: 30298926]
  7. Angew Chem Int Ed Engl. 2012 Jun 4;51(23):5556-78 [PMID: 22566272]
  8. Chemphyschem. 2009 Mar 9;10(4):686-98 [PMID: 19152353]
  9. Materials (Basel). 2019 Oct 11;12(20):null [PMID: 31614477]
  10. J Comput Chem. 2019 Oct 5;40(26):2248-2283 [PMID: 31251411]
  11. J Comput Chem. 2011 Oct;32(13):2896-901 [PMID: 21735451]
  12. J Chem Theory Comput. 2018 Jul 10;14(7):3440-3450 [PMID: 29926727]
  13. J Mol Model. 2013 Jul;19(7):2865-77 [PMID: 23263358]
  14. J Mol Model. 2019 Jan 28;25(2):47 [PMID: 30690660]
  15. J Chem Theory Comput. 2019 Mar 12;15(3):1761-1776 [PMID: 30776228]
  16. Molecules. 2018 Oct 25;23(11):null [PMID: 30366391]
  17. J Phys Chem A. 2014 Mar 13;118(10):1948-63 [PMID: 24555526]
  18. Angew Chem Int Ed Engl. 1999 Sep;38(18):2686-2714 [PMID: 10508357]
  19. Phys Chem Chem Phys. 2017 Dec 13;19(48):32166-32178 [PMID: 29199313]
  20. Inorg Chem. 2017 Jan 3;56(1):488-502 [PMID: 27966937]
  21. Phys Chem Chem Phys. 2008 Nov 28;10(44):6615-20 [PMID: 18989472]
  22. Phys Chem Chem Phys. 2010 Jul 28;12(28):7736-47 [PMID: 20495729]
  23. Inorg Chem. 2014 Jan 6;53(1):478-95 [PMID: 24320732]
  24. J Am Chem Soc. 2016 Apr 6;138(13):4334-7 [PMID: 26910602]
  25. J Phys Chem A. 2017 Sep 14;121(36):6845-6862 [PMID: 28782954]
  26. J Chem Phys. 2006 Jan 21;124(3):034108 [PMID: 16438568]
  27. J Am Chem Soc. 2005 Apr 27;127(16):5979-89 [PMID: 15839698]
  28. Molecules. 2019 Aug 08;24(16):null [PMID: 31398800]
  29. J Am Chem Soc. 2008 Jul 16;130(28):9058-71 [PMID: 18564841]
  30. J Chem Theory Comput. 2011 Oct 11;7(10):3027-34 [PMID: 26598144]
  31. J Phys Chem Lett. 2018 Jun 21;9(12):3387-3391 [PMID: 29870253]
  32. ChemistryOpen. 2019 Apr 18;8(4):497-507 [PMID: 31019875]
  33. J Chem Phys. 2009 Apr 28;130(16):164108 [PMID: 19405562]
  34. J Phys Chem A. 2015 Mar 5;119(9):1642-56 [PMID: 25325889]
  35. Phys Chem Chem Phys. 2015 Jan 14;17(2):858-67 [PMID: 25141075]
  36. Inorg Chem. 2017 May 15;56(10):5793-5803 [PMID: 28448130]
  37. J Comput Chem. 2012 Feb 15;33(5):580-92 [PMID: 22162017]
  38. Chem Rev. 2016 Feb 24;116(4):2478-601 [PMID: 26812185]
  39. Acc Chem Res. 2019 Jan 15;52(1):119-126 [PMID: 30596416]
  40. Faraday Discuss. 2017 Oct 13;203:485-507 [PMID: 28980683]
  41. Chem Sci. 2018 Mar 23;9(15):3767-3781 [PMID: 29780509]
  42. Inorg Chem. 2013 Jun 17;52(12):7161-71 [PMID: 23725645]
  43. J Am Chem Soc. 2008 Jun 25;130(25):7842-4 [PMID: 18507375]
  44. J Phys Chem A. 2013 Sep 12;117(36):8981-95 [PMID: 23927609]
  45. J Chem Theory Comput. 2015 Apr 14;11(4):1525-39 [PMID: 26889511]
  46. Chem Commun (Camb). 2016 Apr 25;52(32):5565-8 [PMID: 27020251]
  47. J Comput Chem. 2016 Jan 5;37(1):130-42 [PMID: 26515027]
  48. Chemistry. 2009 Aug 3;15(31):7554-68 [PMID: 19593826]
  49. Proc Natl Acad Sci U S A. 2017 Nov 28;114(48):12649-12656 [PMID: 29158379]
  50. IUCrJ. 2015 Jul 30;2(Pt 5):498-510 [PMID: 26306192]
  51. J Chem Theory Comput. 2018 Jul 10;14(7):3479-3492 [PMID: 29812932]
  52. Chem Rev. 2015 Aug 12;115(15):7118-95 [PMID: 26165273]
  53. J Phys Chem A. 2015 Sep 10;119(36):9541-56 [PMID: 26280987]
  54. Chemistry. 2016 Mar 14;22(12):4087-99 [PMID: 26742466]
  55. Nat Commun. 2019 Jan 4;10(1):61 [PMID: 30610194]
  56. Acc Chem Res. 2019 Oct 15;52(10):2870-2880 [PMID: 31318520]
  57. Chem Rev. 2016 May 11;116(9):5072-104 [PMID: 26886515]
  58. J Phys Chem A. 2006 Dec 28;110(51):13877-83 [PMID: 17181347]
  59. J Mol Model. 2007 Feb;13(2):291-6 [PMID: 16927107]
  60. J Phys Chem A. 2017 Dec 14;121(49):9544-9556 [PMID: 29154546]
  61. J Chem Phys. 2018 Jan 7;148(1):011101 [PMID: 29306283]
  62. Phys Chem Chem Phys. 2005 Sep 21;7(18):3297-305 [PMID: 16240044]
  63. J Phys Chem A. 2009 Sep 24;113(38):10391-6 [PMID: 19722600]
  64. J Phys Chem B. 2016 Sep 1;120(34):8784-93 [PMID: 27504672]
  65. Inorg Chem. 2017 Nov 6;56(21):13562-13578 [PMID: 29068669]
  66. Phys Chem Chem Phys. 2016 Dec 7;18(48):33031-33046 [PMID: 27886325]
  67. J Chem Theory Comput. 2015 Sep 8;11(9):4054-63 [PMID: 26575901]
  68. Faraday Discuss. 2017 Oct 13;203:9-27 [PMID: 28731102]
  69. Dalton Trans. 2017 Jul 4;46(26):8323-8338 [PMID: 28350024]
  70. J Chem Theory Comput. 2017 Jan 10;13(1):55-76 [PMID: 27996255]
  71. Phys Chem Chem Phys. 2018 Oct 7;20(37):23913-23927 [PMID: 30206587]
  72. J Chem Phys. 2007 Mar 28;126(12):124101 [PMID: 17411102]
  73. J Chem Phys. 2007 Dec 7;127(21):214103 [PMID: 18067345]
  74. J Am Chem Soc. 2013 May 8;135(18):7005-9 [PMID: 23581907]
  75. J Chem Theory Comput. 2017 Mar 14;13(3):1057-1066 [PMID: 28080051]
  76. Inorg Chem. 2016 Mar 7;55(5):2332-44 [PMID: 26900632]

Grants

  1. CHE 1464906/National Science Foundation
  2. 2018/13673-7/São Paulo Research Foundation (FAPESP)
  3. CNPq 307052/2016-8/São Paulo Research Foundation (FAPESP)

Word Cloud

Created with Highcharts 10.0.0halogenbonding=localmetalcannewacceptormodebondmaterialsstrengthmetal-halogendimersYNCHX-3IIClBrvibrationalanalysisdensitytheoryDFTCCSDTcontributionstabilityroleringIncorporationcenterhalogen-bondedefficientlyfine-tunebondsintroduceelectronicfunctionalitiesatomadopttwopossibleroles:servingpolarizingdonorgroupsinvestigatedscenarios23trans-MMPdPtFX3-halopyridinetoolquantitativeassessmentintroducedcomplementedenergyelectronanalyseselectrostaticpotentialstudiesfunctionalcoupled-clustersingledoubleperturbativetripleexcitationslevelsfirsttimequantifyvariousattractivecontactsdimerclarifyspecialsystemslargesteitherduenonspecificinteractionsHydrogenplayssecondaryactmonomeradoptsquasi-planargeometrybeststrategyaccomplishsubstitutehalo-pyridinehalo-diazoleconsiderablystrengthensfindingsbasedprovidesolidplatformfine-tuningexistingdesignmetal-halogen-bondedMetal-HalogenBondingSeenEyesVibrationalSpectroscopyforceconstantsordermodesmetal–halogen

Similar Articles

Cited By