Periphyton as an indicator of saltwater intrusion into freshwater wetlands: insights from experimental manipulations.

Viviana Mazzei, Benjamin J Wilson, Shelby Servais, Sean P Charles, John S Kominoski, Evelyn E Gaiser
Author Information
  1. Viviana Mazzei: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA. ORCID
  2. Benjamin J Wilson: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA. ORCID
  3. Shelby Servais: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA.
  4. Sean P Charles: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA.
  5. John S Kominoski: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA. ORCID
  6. Evelyn E Gaiser: Department of Biological Sciences and Southeast Environmental Research Center, Florida International University, Miami, Florida, 33199, USA.

Abstract

Saltwater intrusion has particularly large impacts on karstic wetlands of the Caribbean Basin due to their porous, carbonate bedrock and low elevation. Increases in salinity and phosphorus (P) accompanying saltwater intrusion into these freshwater, P-limited wetlands are expected to alter biogeochemical cycles along with the structure and function of plant and algal communities. Calcareous periphyton is a characteristic feature of karstic wetlands and plays a central role in trophic dynamics, carbon storage, and nutrient cycling. Periphyton is extremely sensitive to water quality and quantity, but the effects of saltwater intrusion on these microbial mats remain to be understood. We conducted an ex situ mesocosm experiment to test the independent and combined effects of elevated salinity and P on the productivity, nutrient content, and diatom composition of calcareous periphyton from the Florida Everglades. We measured periphyton total carbon, nitrogen, and P concentrations and used settlement plates to measure periphyton accumulation rates and diatom species composition. The light and dark bottle method was used to measure periphyton productivity and respiration. We found that exposure to ~1 g P·m ·yr significantly increased periphyton mat total P concentrations, but had no effect on any other response variable. Mats exposed to elevated salinity (~22 kg salt·m ·yr ) had significantly lower total carbon and tended to have lower biomass and reduced productivity and respiration rates; however, mats exposed to salinity and P simultaneously had greater gross and net productivity. We found strong diatom species dissimilarity between fresh- and saltwater-treated periphyton, while P additions only elicited compositional changes in periphyton also treated with saltwater. This study contributes to our understanding of how the ecologically important calcareous periphyton mats unique to karstic, freshwater wetlands respond to increased salinity and P caused saltwater intrusion and provides a guide to diatom indicator taxa for these two important environmental drivers.

Keywords

References

  1. Affenzeller, M. J., A. Darehshouri, A. Andosch, C. Lütz, and U. Lütz-Meindl. 2009. Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. Journal of Experimental Botany 60:939-954.
  2. Alam, S. M. 1999. Nutrient uptake by plants under stress conditions. Pages 285-313 in M. Pessarakli, editor. Handbook of plant and crop stress. CRC Press, Boca Raton, Florida, USA.
  3. Azim, M. E., and T. Asaeda. 2005. Periphyton structure, diversity and colonization. Pages 15-35 in M. E. Azim, M. C. Verdegem, A. A. van Dam, and M. C. Beveridge, editors. Periphyton: ecology, exploitation and management. CABI Publishing, Cambridge, Massachusetts, USA.
  4. Briceño, H., G. Miller, and S. E. Davis. 2014. Relating freshwater flow with estuarine water quality in the Southern Everglades mangrove ecotone. Wetlands 34:101-111.
  5. Browder, J. A., P. J. Gleason, and D. R. Swift. 1994. Periphyton in the everglades: spatial variation, environmental correlates, and ecological implications. Pages 379-418 in S. E. Davis and J. C. Ogden. Everglades: the ecosystem and its restoration. St. Lucie Press, Boca Raton, Florida, USA.
  6. Chambers, L. G., S. E. Davis, T. Troxler, J. N. Boyer, A. Downey-Wall, and L. J. Scinto. 2014. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil. Hydrobiologia 726:195-211.
  7. Childers, D. L., J. N. Boyer, S. E. Davis, C. J. Madden, D. T. Rudnick, and F. H. Sklar. 2006. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology and Oceanography 51:602-616.
  8. Clarke, K. R., and R. N. Gorley, editors. 2006. Primer v6: user manual/tutorial. PRIMER-E, Plymouth, Massachusetts, USA.
  9. Davis, S. M., D. L. Childers, J. J. Lorenz, H. R. Wanless, and T. E. Hopkins. 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25:832-842.
  10. De Cáceres, M. 2013. How to use the indicspecies package (ver. 1.7.1). R Proj 29. https://cran.r-project.org/web/packages/indicspecies/vignettes/indicspeciesTutorial.pdf
  11. De Cáceres, M., P. Legendre, and M. Moretti. 2010. Improving indicator species analysis by combining groups of sites. Oikos 119:1674-1684.
  12. Desrosiers, C., J. Leflaive, A. Eulin, and L. Ten-Hage. 2013. Bioindicators in marine waters: benthic diatoms as a tool to assess water quality from eutrophic to oligotrophic coastal ecosystems. Ecological Indicators 32:25-34.
  13. Elser, J. J., M. E. Bracken, E. E. Cleland, D. S. Gruner, W. S. Harpole, H. Hillebrand, J. T. Ngai, E. W. Seabloom, J. B. Shurin, and J. E. Smith. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:1135-1142.
  14. Flower, H., M. Rains, D. Lewis, J. Z. Zhang, and R. Price. 2017. Saltwater intrusion as potential driver of phosphorus release from limestone bedrock in a coastal aquifer. Estuarine, Coastal and Shelf Science 184:166-176.
  15. Gaiser, E. E. 2009. Periphyton as an indicator of restoration in the Florida Everglades. Ecological Indicators 9:37-45.
  16. Gaiser, E. E., L. J. Scinto, J. H. Richards, K. Jayachandran, D. L. Childers, J. C. Trexler, and R. D. Jones. 2004. Phosphorus in periphyton mats provides the best metric for detecting low-level P enrichment in an oligotrophic wetland. Water Research 38:507-516.
  17. Gaiser, E. E., J. C. Trexler, J. H. Richards, D. L. Childers, D. Lee, A. L. Edwards, L. J. Scinto, K. Jayachandran, G. B. Noe, and R. D. Jones. 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34:717-723.
  18. Gaiser, E. E., J. C. Trexler, R. D. Jones, D. L. Childers, J. H. Richards, and L. J. Scinto. 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography 51:617-630.
  19. Gaiser, E. E., J. M. L. Hée, F. A. Tobias, and A. H. Wachnicka. 2010. Mastogloia smithii var lacustris Grun.: a structural engineer of calcareous mats in karstic subtropical wetlands. Proceedings of the Academy of Natural Sciences of Philadelphia 160:99-112.
  20. Gaiser, E. E., P. V. McCormick, S. E. Hagerthey, and A. D. Gottlieb. 2011. Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41:92-120.
  21. Hagerthey, S. E., B. J. Bellinger, K. Wheeler, M. Gantar, and E. E. Gaiser. 2011. Everglades periphyton: a biogeochemical perspective. Critical Reviews in Environmental Science and Technology 41:309-343.
  22. Hasle, G. R., and G. A. Fryxell. 1970. Diatoms: cleaning and mounting for light and electron microscopy. Transactions of the American Microscopical Society 89:469-474.
  23. Herbert, E. R., P. Boon, A. J. Burgin, S. C. Neubauer, R. B. Franklin, M. Ardon, K. N. Hopfensperger, L. P. M. Lamers, and P. Gell. 2015. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6:1-43.
  24. Hu, Y., and U. Schmidhalter. 2005. Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science 168:541-549.
  25. James, K. R., B. Cant, and T. Ryan. 2003. Responses of freshwater biota to rising salinity levels and implications for saline water management: a review. Australian Journal of Botany 51:703-713.
  26. Johnson, R. E., N. C. Tuchman, and C. G. Peterson. 1997. Changes in the vertical microdistribution of diatoms within a developing periphyton mat. Journal of the North American Benthological Society 16:503-519.
  27. La Hée, J. M., and E. E. Gaiser. 2012. Benthic diatom assemblages as indicators of water quality in the Everglades and three tropical karstic wetlands. Freshwater Science 31:205-221.
  28. Lee, S. S., E. E. Gaiser, B. Van De Vijver, M. B. Edlund, and S. A. Spaulding. 2014. Morphology and typification of Mastogloia smithii and M. lacustris, with descriptions of two new species from the Florida Everglades and the Caribbean region. Diatom Research 29:325-350.
  29. Lee, D., B. J. Wilson, S. Servais, V. Mazzei, and J. Kominoski. 2019. The Salinity and phosphorus mesocosm experiment in freshwater sawgrass wetlands: Determining the trajectory and capacity of freshwater wetland ecosystems to recover carbon losses from saltwater intrusion (FCE LTER), Florida, USA from 2015 to 2018. Environmental Data Initiative. https://doi.org/10.6073/pasta/a269722318964f74cb5cabf87f0d3fb3. Dataset accessed 11/14/2019.
  30. Lu, C., and A. Vonshak. 2002. Effects of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells. Physiologia Plantarum 114:405-413.
  31. Mazzei, V., and E. E. Gaiser. 2018. Diatoms as tools for inferring ecotone boundaries in a coastal freshwater wetland threatened by saltwater intrusion. Ecological Indicators 88:190-204.
  32. Mazzei, V., et al. 2018. Functional and compositional responses of periphyton mats to simulated saltwater intrusion in the southern Everglades. Estuaries and Coasts 41:2105-2119.
  33. McCormick, P. V., and M. B. O'Dell. 1996. Quantifying periphyton responses to phosphorus in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological Society 15:450-468.
  34. McCormick, P. V., and R. J. Stevenson. 1998. Periphyton as a tool for ecological assessment and management in the Florida Everglades. Journal of Phycology 34:726-733.
  35. McCormick, P. V., M. B. O'Dell, R. B. Shuford, J. G. Backus, and W. C. Kennedy. 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71:119-139.
  36. McCormick, P. V., J. W. Harvey, and E. S. Crawford. 2011. Influence of changing water sources and mineral chemistry on the Everglades ecosystem. Critical Reviews in Environmental Science and Technology 41:28-63.
  37. McVoy, C. W., W. P. Said, J. Obeysekera, J. Van Arman, and T. W. Dreschel. 2011. Landscapes and hydrology of the predrainage everglades. University of Florida Press, Gainesville, Florida, USA.
  38. Mendelssohn, I. A., and D. P. Batzer. 2006. Abiotic constraints for wetland plants and animals. Pages 82-114 in D. P. Batzer and R. R. Sharitz, editors. Ecology of freshwater and estuarine wetlands. University of California Press, Berkeley, California, USA.
  39. Odum, E. P., J. T. Finn, and E. H. Franz. 1979. Perturbation theory and the subsidy-stress gradient. BioScience 29:349-352.
  40. Pan, Y., R. J. Stevenson, P. Vaithiyanathan, J. Slate, and C. J. Richardson. 2000. Changes in algal assemblages along observed and experimental phosphorus gradients in a subtropical wetland, USA. Freshwater Biology 44:339-353.
  41. Potapova, M., and D. F. Charles. 2007. Diatom metrics for monitoring eutrophication in rivers of the United States. Ecological Indicators 7:48-70.
  42. Price, R. M., P. K. Swart, and J. W. Fourqurean. 2006. Coastal groundwater discharge-an additional source of phosphorus for the oligotrophic wetlands of the Everglades. Hydrobiologia 569:23-36.
  43. R Core Team. 2017. R version 3.3.3. R Project for Statistical Computing, Vienna, Austria. www.R-project.org
  44. Rejmánková, E., and J. Komárková. 2000. A function of cyanobacterial mats in phosphorus-limited tropical wetlands. Hydrobiologia 431:135-153.
  45. Rejmánková, E., and K. Komárková. 2005. Response of cyanobacterial mats to nutrient and salinity changes. Aquatic Botany 83:87-107.
  46. Richardson, C. J., and S. S. Qian. 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: a new paradigm for sustaining ecosystem structure and function. Environmental Science & Technology 33:1545-1551.
  47. Ross, M. S., J. F. Meeder, J. P. Sah, P. L. Ruiz, and G. J. Telesnicki. 2000. The Southeast Saline Everglades revisited: a half-century of coastal vegetation change. Journal of Vegetation Science 11:101-112.
  48. Saha, A. K., S. Saha, J. Sadle, J. Jiang, M. S. Ross, R. M. Price, L. S. Sternberg, and K. S. Wendelberger. 2011. Sea level rise and South Florida coastal forests. Climatic Change 107:81-108.
  49. Schedlbauer, J. L., J. W. Munyon, S. F. Oberbauer, E. E. Gaiser, and G. Starr. 2012. Controls on ecosystem carbon dioxide exchange in short-and long-hydroperiod Florida Everglades freshwater marshes. Wetlands 32:801-812.
  50. Scinto, L. J., and K. R. Reddy. 2003. Biotic and abiotic uptake of phosphorus by periphyton in a subtropical freshwater wetland. Aquatic Botany 77:203-222.
  51. Servais, S., J. S. Kominoski, S. P. Charles, E. E. Gaiser, V. Mazzei, T. G. Troxler, and B. J. Wilson. 2019. Saltwater intrusion and soil carbon loss: testing effects of salinity and phosphorus loading on microbial functions in experimental freshwater wetlands. Geoderma 337:1291-1300.
  52. Stevenson, J. 2014. Ecological assessments with algae: a review and synthesis. Journal of Phycology 50:437-461.
  53. Solórzano, L., and J. H. Sharp. 1980. Determination of total dissolved phosphorus and particulate phosphorus in natural waters 1. Limnology and Oceanography 25:754-758.
  54. Stevenson, R. J., Y. Pan, and H. van Dam. 1999. Assessing environmental conditions in rivers and streams with diatoms in The diatoms: applications for the environmental and earth sciences. Second edition. Cambridge University Press, Cambridge, UK.
  55. Sudhir, P., and S. D. S. Murthy. 2004. Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481-486.
  56. Taffs, K. H., K. M. Saunders, and B. Logan. 2017. Diatoms as indicators of environmental change in estuaries. Pages 277-294 in K. Weckström, K. M. Saunders, P. A. Gell, and C. G. Skilbeck, editors. Applications of paleoenvironmental techniques to estuarine systems. Developments in paleoenvironmental research. Springer, Dordrecht, The Netherlands.
  57. Touchette, B. W. 2007. Seagrass-salinity interactions: physiological mechanisms used by submersed marine angiosperms for a life at sea. Journal of Experimental Marine Biology and Ecology 350:194-215.
  58. Trexler, J. C., E. E. Gaiser, J. S. Kominoski, and J. Sanchez. 2015. The role of periphyton mats in consumer community structure and function in calcareous wetlands: lessons from the Everglades. Pages 155-170 in J. A. Entry, A. D. Gottlieb, K. Jayachandran, and A. Ogram, editors. Microbiology of the everglades ecosystem. CRC Press, Boca Raton, Florida, USA.
  59. Trobajo, R., L. Rovira, D. G. Mann, and E. J. Cox. 2011. Effects of salinity on growth and on valve morphology of five estuarine diatoms. Phycological Research 59:83-90.
  60. Troxler, T. G., D. L. Childers, and C. J. Madden. 2014. Drivers of decadal-scale change in southern Everglades wetland macrophyte communities of the coastal ecotone. Wetlands 34:81-90.
  61. Vymazal, J., and C. J. Richardson. 1995. Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. Journal of Phycology 31:343-354.
  62. Weston, N. B., M. A. Vile, S. C. Neubauer, and D. J. Velinsky. 2011. Accelerated microbial organic matter mineralization following salt-water intrusion into tidal freshwater marsh soils. Biogeochemistry 102:135-151.
  63. Williams, A. A., N. T. Lauer, and C. T. Hackney. 2014. Soil phosphorus dynamics and saltwater intrusion in a Florida estuary. Wetlands 34:535-544.
  64. Wilson, B. J., S. Servais, S. P. Charles, V. Mazzei, E. E. Gaiser, J. S. Kominoski, J. H. Richards, and T. G. Troxler. 2019. Phosphorus alleviation of salinity stress: effects of saltwater intrusion on an Everglades freshwater peat marsh. Ecology 100:e02672.
  65. Xue, S. K. 2018. Appendix 3A-5: Water year 2017 and five-year (water year 2012-2017) annual flows and total phosphorus loads and concentrations by structure and area. In 2018 South Florida Environmental Report-Volume I. South Florida Water Management District, West Palm Beach, Florida, USA.

Grants

  1. DEB-1237517/National Science Foundation's Florida Coastal Everglades Long Term Ecological Research Program
  2. R/C-S-56/Florida Sea Grant

MeSH Term

Caribbean Region
Florida
Fresh Water
Periphyton
Wetlands

Word Cloud

Created with Highcharts 10.0.0periphytonPsalinityintrusionwetlandssaltwatermatsproductivitydiatomkarsticfreshwatercarbontotalphosphorusalgalnutrientPeriphytoneffectselevatedcompositioncalcareousconcentrationsusedmeasureratesspeciesrespirationfound·yrsignificantlyincreasedexposedlowerimportantindicatorSaltwaterparticularlylargeimpactsCaribbeanBasindueporouscarbonatebedrocklowelevationIncreasesaccompanyingP-limitedexpectedalterbiogeochemicalcyclesalongstructurefunctionplantcommunitiesCalcareouscharacteristicfeatureplayscentralroletrophicdynamicsstoragecyclingextremelysensitivewaterqualityquantitymicrobialremainunderstoodconductedexsitumesocosmexperimenttestindependentcombinedcontentFloridaEvergladesmeasurednitrogensettlementplatesaccumulationlightdarkbottlemethodexposure~1 gP·mmateffectresponsevariableMats~22 kgsalt·mtendedbiomassreducedhoweversimultaneouslygreatergrossnetstrongdissimilarityfresh-saltwater-treatedadditionselicitedcompositionalchangesalsotreatedstudycontributesunderstandingecologicallyuniquerespondcausedprovidesguidetaxatwoenvironmentaldriverswetlands:insightsexperimentalmanipulationsdiatomsecologicalindicators

Similar Articles

Cited By