Artificial intelligence approaches using natural language processing to advance EHR-based clinical research.

Young Juhn, Hongfang Liu
Author Information
  1. Young Juhn: Precision Population Science Lab, Division of Community Pediatric and Adolescent Medicine, Department of Pediatric and Adolescent Medicine, Rochester, Minn; Division of Allergy, Department of Medicine, Mayo Clinic, Rochester, Minn. Electronic address: juhn.young@mayo.edu.
  2. Hongfang Liu: Division of Digital Health, Department of Health Sciences Research, Mayo Clinic, Rochester, Minn.

Abstract

The wide adoption of electronic health record systems in health care generates big real-world data that open new venues to conduct clinical research. As a large amount of valuable clinical information is locked in clinical narratives, natural language processing techniques as an artificial intelligence approach have been leveraged to extract information from clinical narratives in electronic health records. This capability of natural language processing potentially enables automated chart review for identifying patients with distinctive clinical characteristics in clinical care and reduces methodological heterogeneity in defining phenotype, obscuring biological heterogeneity in research concerning allergy, asthma, and immunology. This brief review discusses the current literature on the secondary use of electronic health record data for clinical research concerning allergy, asthma, and immunology and highlights the potential, challenges, and implications of natural language processing techniques.

Keywords

References

  1. BMJ Open Respir Res. 2020 Feb;7(1): [PMID: 33371009]
  2. J Biomed Inform. 2018 Jul;83:167-177 [PMID: 29883623]
  3. Am J Respir Crit Care Med. 2017 Aug 15;196(4):430-437 [PMID: 28375665]
  4. J Am Med Inform Assoc. 2014 Jul-Aug;21(4):578-82 [PMID: 24821743]
  5. Yearb Med Inform. 2014 Aug 15;9:14-20 [PMID: 25123716]
  6. Eur Respir J. 2010 Jul;36(1):48-56 [PMID: 20032011]
  7. J Am Med Inform Assoc. 2013 Sep-Oct;20(5):962-8 [PMID: 23748627]
  8. JAMA. 2018 Dec 4;320(21):2199-2200 [PMID: 30398550]
  9. Genom Soc Policy. 2010;6(3):50 [PMID: 22962560]
  10. AMIA Annu Symp Proc. 2014 Nov 14;2014:580-8 [PMID: 25954363]
  11. J Am Med Inform Assoc. 2018 Mar 1;25(3):353-359 [PMID: 29202185]
  12. J Allergy Clin Immunol. 2018 Jun;141(6):2292-2294.e3 [PMID: 29438770]
  13. Front Pediatr. 2019 Apr 02;7:113 [PMID: 31001500]
  14. Ann Allergy Asthma Immunol. 2013 Nov;111(5):364-9 [PMID: 24125142]
  15. J Am Med Inform Assoc. 2014 Mar-Apr;21(2):221-30 [PMID: 24201027]
  16. JAMA Netw Open. 2019 Aug 2;2(8):e198777 [PMID: 31397859]
  17. AMIA Annu Symp Proc. 2008 Nov 06;:308-12 [PMID: 18999057]
  18. Stud Health Technol Inform. 2017;245:1170-1174 [PMID: 29295287]
  19. J Am Med Inform Assoc. 2014 Sep-Oct;21(5):876-84 [PMID: 24833775]
  20. BMC Pulm Med. 2018 Feb 13;18(1):34 [PMID: 29439692]
  21. J Biomed Inform. 2015 Jun;55:188-95 [PMID: 25917057]
  22. J Allergy Clin Immunol Pract. 2018 Jan - Feb;6(1):126-131 [PMID: 28634104]
  23. Eur Respir J. 2019 Apr 11;53(4): [PMID: 30765505]
  24. Pediatr Emerg Care. 2015 Jul;31(7):536-41 [PMID: 26148107]
  25. J Am Med Inform Assoc. 2019 Oct 1;26(10):977-988 [PMID: 31220274]
  26. JAMA. 2017 Aug 22;318(8):703-704 [PMID: 28715550]
  27. Nat Med. 2019 Jan;25(1):70-74 [PMID: 30617318]
  28. J Am Med Inform Assoc. 2016 Apr;23(e1):e79-87 [PMID: 26384406]
  29. Nat Med. 2019 Mar;25(3):433-438 [PMID: 30742121]
  30. J Am Med Inform Assoc. 2019 Feb 1;26(2):106-114 [PMID: 30517663]
  31. J Am Med Inform Assoc. 2019 Oct 1;26(10):1158 [PMID: 31135874]
  32. J Am Med Inform Assoc. 2019 Nov 1;26(11):1203-1208 [PMID: 31305921]
  33. J Biomed Inform. 2018 Nov;87:50-59 [PMID: 30266231]
  34. AMIA Annu Symp Proc. 2009 Nov 14;2009:442-6 [PMID: 20351896]
  35. Pharmacoepidemiol Drug Saf. 2013 Aug;22(8):826-33 [PMID: 23592573]
  36. Science. 2019 Oct 25;366(6464):447-453 [PMID: 31649194]
  37. J Biomed Inform. 2013 Oct;46(5):765-73 [PMID: 23810857]
  38. Value Health. 2015 Mar;18(2):137-40 [PMID: 25773546]
  39. IEEE Int Conf Healthc Inform. 2017 Aug;2017:83-90 [PMID: 29104964]
  40. J Allergy Clin Immunol Pract. 2017 May - Jun;5(3):737-743.e3 [PMID: 28110055]
  41. J Biomed Inform. 2018 Jan;77:34-49 [PMID: 29162496]
  42. J Am Med Inform Assoc. 2011 Sep-Oct;18(5):544-51 [PMID: 21846786]
  43. J Am Med Inform Assoc. 2019 Nov 1;26(11):1218-1226 [PMID: 31300825]

Grants

  1. R01 HL126667/NHLBI NIH HHS
  2. R21 AI116839/NIAID NIH HHS

MeSH Term

Allergy and Immunology
Electronic Health Records
Humans
Natural Language Processing
Research Design

Word Cloud

Created with Highcharts 10.0.0clinicalnaturallanguageprocessinghealthresearchelectronicdataintelligenceallergyasthmaimmunologyrecordcareinformationnarrativestechniquesartificialreviewheterogeneityconcerningwideadoptionsystemsgeneratesbigreal-worldopennewvenuesconductlargeamountvaluablelockedapproachleveragedextractrecordscapabilitypotentiallyenablesautomatedchartidentifyingpatientsdistinctivecharacteristicsreducesmethodologicaldefiningphenotypeobscuringbiologicalbriefdiscussescurrentliteraturesecondaryusehighlightspotentialchallengesimplicationsArtificialapproachesusingadvanceEHR-basedEHRsalgorithmsmininginformaticsmachinelearning

Similar Articles

Cited By