Survival dynamical systems: individual-level survival analysis from population-level epidemic models.

Wasiur R KhudaBukhsh, Boseung Choi, Eben Kenah, Grzegorz A Rempała
Author Information
  1. Wasiur R KhudaBukhsh: Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA. ORCID
  2. Boseung Choi: Division of Economics and Statistics, Department of National Statistics, Korea University Sejong campus, Sejong Special Autonomous City, Republic of Korea.
  3. Eben Kenah: Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA. ORCID
  4. Grzegorz A Rempała: Division of Biostatistics, College of Public Health and Mathematical Biosciences Institute, The Ohio State University, Columbus, OH, USA. ORCID

Abstract

In this paper, we show that solutions to ordinary differential equations describing the large-population limits of Markovian stochastic epidemic models can be interpreted as survival or cumulative hazard functions when analysing data on individuals sampled from the population. We refer to the individual-level survival and hazard functions derived from population-level equations as a survival dynamical system (SDS). To illustrate how population-level dynamics imply probability laws for individual-level infection and recovery times that can be used for statistical inference, we show numerical examples based on synthetic data. In these examples, we show that an SDS analysis compares favourably with a complete-data maximum-likelihood analysis. Finally, we use the SDS approach to analyse data from a 2009 influenza A(H1N1) outbreak at Washington State University.

Keywords

References

  1. J Math Biol. 2008 Mar;56(3):293-310 [PMID: 17668212]
  2. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 [PMID: 12241447]
  3. Epidemiol Infect. 2015 Jun;143(8):1610-20 [PMID: 25323631]
  4. J Math Biol. 2011 Apr;62(4):479-508 [PMID: 20425114]
  5. Philos Trans R Soc Lond B Biol Sci. 2015 Aug 19;370(1675):null [PMID: 26150668]
  6. Biostatistics. 2011 Jul;12(3):548-66 [PMID: 21071607]
  7. Science. 2013 Mar 15;339(6125):1266-71 [PMID: 23493691]
  8. Epidemiol Infect. 2015 Jun;143(8):1606-9 [PMID: 25306974]
  9. Math Biosci. 2015 Dec;270(Pt B):198-203 [PMID: 25843353]
  10. J Math Neurosci. 2012 May 31;2(1):10 [PMID: 22657695]
  11. Biostatistics. 2012 Jan;13(1):153-65 [PMID: 21835814]
  12. MMWR Suppl. 2014 Sep 26;63(3):1-14 [PMID: 25254986]
  13. J R Stat Soc Series B Stat Methodol. 2013 Mar;75(2):277-303 [PMID: 23772180]
  14. J Biol Dyn. 2018 Dec;12(1):16-38 [PMID: 29157162]
  15. Clin Infect Dis. 2011 Jan 1;52 Suppl 1:S154-60 [PMID: 21342888]
  16. PLoS Curr. 2014 Sep 02;6:null [PMID: 25642364]
  17. Philos Trans R Soc Lond B Biol Sci. 2017 May 26;372(1721):null [PMID: 28396469]
  18. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 2):036113 [PMID: 17930312]
  19. Math Biosci Eng. 2017 Feb 1;14(1):67-77 [PMID: 27879120]
  20. J Biol Dyn. 2018 Dec;12(1):746-788 [PMID: 30175687]

Grants

  1. R01 AI116770/NIAID NIH HHS
  2. U54 GM111274/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0survivalmodelsanalysisshowepidemicdataindividual-levelpopulation-leveldynamicalSDSequationsstochasticcanhazardfunctionsexamplespapersolutionsordinarydifferentialdescribinglarge-populationlimitsMarkovianinterpretedcumulativeanalysingindividualssampledpopulationreferderivedsystemillustratedynamicsimplyprobabilitylawsinfectionrecoverytimesusedstatisticalinferencenumericalbasedsyntheticcomparesfavourablycomplete-datamaximum-likelihoodFinallyuseapproachanalyse2009influenzaH1N1outbreakWashingtonStateUniversitySurvivalsystems:systemsmultiscaleprocesses

Similar Articles

Cited By