Memristive and CMOS Devices for Neuromorphic Computing.

Valerio Milo, Gerardo Malavena, Christian Monzio Compagnoni, Daniele Ielmini
Author Information
  1. Valerio Milo: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Italian Universities Nanoelectronics Team (IU.NET), Piazza L. da Vinci 32, 20133 Milano, Italy. ORCID
  2. Gerardo Malavena: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Italian Universities Nanoelectronics Team (IU.NET), Piazza L. da Vinci 32, 20133 Milano, Italy.
  3. Christian Monzio Compagnoni: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Italian Universities Nanoelectronics Team (IU.NET), Piazza L. da Vinci 32, 20133 Milano, Italy. ORCID
  4. Daniele Ielmini: Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and Italian Universities Nanoelectronics Team (IU.NET), Piazza L. da Vinci 32, 20133 Milano, Italy.

Abstract

Neuromorphic computing has emerged as one of the most promising paradigms to overcome the limitations of von Neumann architecture of conventional digital processors. The aim of neuromorphic computing is to faithfully reproduce the computing processes in the human brain, thus paralleling its outstanding energy efficiency and compactness. Toward this goal, however, some major challenges have to be faced. Since the brain processes information by high-density neural networks with ultra-low power consumption, novel device concepts combining high scalability, low-power operation, and advanced computing functionality must be developed. This work provides an overview of the most promising device concepts in neuromorphic computing including complementary metal-oxide semiconductor (CMOS) and memristive technologies. First, the physics and operation of CMOS-based floating-gate memory devices in artificial neural networks will be addressed. Then, several memristive concepts will be reviewed and discussed for applications in deep neural network and spiking neural network architectures. Finally, the main technology challenges and perspectives of neuromorphic computing will be discussed.

Keywords

References

  1. Science. 2019 May 10;364(6440):570-574 [PMID: 31023890]
  2. Nature. 2011 Nov 16;479(7373):310-6 [PMID: 22094690]
  3. Sci Adv. 2015 Jul 03;1(6):e1500031 [PMID: 26601208]
  4. Nature. 2018 Jun;558(7708):60-67 [PMID: 29875487]
  5. Nat Mater. 2017 Apr;16(4):414-418 [PMID: 28218920]
  6. IEEE Trans Biomed Circuits Syst. 2011 Jun;5(3):244-52 [PMID: 23851475]
  7. Nature. 2011 Aug 11;476(7359):189-93 [PMID: 21804568]
  8. Nature. 2016 Feb 11;530(7589):144-7 [PMID: 26863965]
  9. Trends Cogn Sci. 2019 Mar;23(3):235-250 [PMID: 30704969]
  10. Nat Commun. 2018 Apr 18;9(1):1533 [PMID: 29670101]
  11. IEEE Trans Biomed Circuits Syst. 2018 Feb;12(1):106-122 [PMID: 29377800]
  12. Sci Rep. 2017 Jul 13;7(1):5288 [PMID: 28706303]
  13. Front Neurosci. 2014 Jul 22;8:205 [PMID: 25100936]
  14. Neural Comput. 2008 May;20(5):1119-64 [PMID: 18199026]
  15. Nat Mater. 2017 Jan;16(1):101-108 [PMID: 27669052]
  16. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):E1266-74 [PMID: 22089232]
  17. Nat Mater. 2011 Jun 26;10(8):591-5 [PMID: 21706012]
  18. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  19. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19383-8 [PMID: 22080608]
  20. Nat Mater. 2007 Nov;6(11):833-40 [PMID: 17972938]
  21. Nat Nanotechnol. 2016 Aug;11(8):693-9 [PMID: 27183057]
  22. IEEE Trans Neural Netw Learn Syst. 2018 Oct;29(10):4782-4790 [PMID: 29990267]
  23. J Neurosci. 1998 Dec 15;18(24):10464-72 [PMID: 9852584]
  24. Nat Mater. 2011 Jul 10;10(8):625-30 [PMID: 21743450]
  25. Nat Commun. 2017 May 12;8:15199 [PMID: 28497781]
  26. Nat Mater. 2013 Feb;12(2):114-7 [PMID: 23241533]
  27. Nat Commun. 2018 Jun 28;9(1):2514 [PMID: 29955057]
  28. Nat Mater. 2019 Apr;18(4):309-323 [PMID: 30894760]
  29. Adv Mater. 2017 Jan;29(4): [PMID: 27874238]
  30. Nat Commun. 2015 Dec 08;6:8941 [PMID: 26642827]
  31. Nat Commun. 2016 Sep 29;7:12611 [PMID: 27681181]
  32. Nat Mater. 2019 Feb;18(2):141-148 [PMID: 30559410]
  33. Nature. 2017 Jul 5;547(7661):74-78 [PMID: 28682331]
  34. Bull Math Biol. 1990;52(1-2):99-115; discussion 73-97 [PMID: 2185863]
  35. Nature. 2016 Jan 28;529(7587):484-9 [PMID: 26819042]
  36. Nano Lett. 2010 Apr 14;10(4):1297-301 [PMID: 20192230]
  37. J Neurosci. 2006 Sep 20;26(38):9673-82 [PMID: 16988038]
  38. Nanoscale. 2018 Nov 29;10(46):21755-21763 [PMID: 30431045]
  39. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4123-4128 [PMID: 30782810]
  40. Nat Nanotechnol. 2013 Aug;8(8):587-93 [PMID: 23892985]
  41. Nat Commun. 2018 Dec 14;9(1):5311 [PMID: 30552327]
  42. Nature. 2017 Jul 26;547(7664):428-431 [PMID: 28748930]
  43. Annu Rev Physiol. 2002;64:355-405 [PMID: 11826273]
  44. Neuron. 2001 Dec 20;32(6):1149-64 [PMID: 11754844]
  45. Neural Comput. 2009 May;21(5):1259-76 [PMID: 19718815]
  46. Sci Adv. 2018 Sep 12;4(9):eaat4752 [PMID: 30214936]
  47. Nano Lett. 2012 May 9;12(5):2179-86 [PMID: 21668029]
  48. Nanotechnology. 2020 Feb 21;31(9):092001 [PMID: 31698347]
  49. Nat Mater. 2007 Nov;6(11):813-23 [PMID: 17972936]
  50. Adv Mater. 2013 Mar 25;25(12):1774-9 [PMID: 23355110]
  51. Chem Rev. 2010 Jan;110(1):240-67 [PMID: 19715293]
  52. Nature. 2015 May 7;521(7550):61-4 [PMID: 25951284]
  53. Nat Nanotechnol. 2015 Mar;10(3):191-4 [PMID: 25740127]
  54. Nano Lett. 2015 Mar 11;15(3):2203-11 [PMID: 25710872]
  55. Nat Mater. 2014 Jan;13(1):11-20 [PMID: 24343514]
  56. Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5323-8 [PMID: 9560274]
  57. Sci Rep. 2016 Feb 19;6:21331 [PMID: 26893175]
  58. Phys Rev B Condens Matter. 1996 Oct 1;54(13):9353-9358 [PMID: 9984672]
  59. Nanotechnology. 2013 Sep 27;24(38):382001 [PMID: 23999572]
  60. Hippocampus. 2002;12(5):637-47 [PMID: 12440578]
  61. Sci Rep. 2018 Jun 11;8(1):8914 [PMID: 29892090]
  62. Sci Adv. 2020 Jan 31;6(5):eaay2378 [PMID: 32064342]
  63. Nature. 2018 Feb 21;554(7693):500-504 [PMID: 29469093]
  64. Science. 2014 Aug 8;345(6197):668-73 [PMID: 25104385]
  65. Nat Commun. 2018 Jun 19;9(1):2385 [PMID: 29921923]
  66. Nat Nanotechnol. 2015 Mar;10(3):187-91 [PMID: 25740126]
  67. Nature. 2008 May 1;453(7191):80-3 [PMID: 18451858]
  68. Nanoscale. 2014 Jun 7;6(11):5698-702 [PMID: 24769626]
  69. Adv Mater. 2018 Mar;30(9): [PMID: 29318659]
  70. Front Neurosci. 2016 Mar 08;10:56 [PMID: 27013934]
  71. IEEE Trans Biomed Circuits Syst. 2015 Apr;9(2):166-74 [PMID: 25879967]
  72. Adv Mater. 2013 Mar 13;25(10):1474-8 [PMID: 23288623]

Grants

  1. 648635/H2020 European Research Council

Word Cloud

Created with Highcharts 10.0.0computingneuralneuromorphicnetworkconceptsmemristivewillNeuromorphicpromisingprocessesbrainchallengesnetworksdeviceoperationCMOSdevicesartificialdiscussedspikingemergedoneparadigmsovercomelimitationsvonNeumannarchitectureconventionaldigitalprocessorsaimfaithfullyreproducehumanthusparallelingoutstandingenergyefficiencycompactnessTowardgoalhowevermajorfacedSinceinformationhigh-densityultra-lowpowerconsumptionnovelcombininghighscalabilitylow-poweradvancedfunctionalitymustdevelopedworkprovidesoverviewincludingcomplementarymetal-oxidesemiconductortechnologiesFirstphysicsCMOS-basedfloating-gatememoryaddressedseveralreviewedapplicationsdeeparchitecturesFinallymaintechnologyperspectivesMemristiveDevicesComputingFlashmemoriespatternrecognitionresistiveswitchingsynapticplasticity

Similar Articles

Cited By (15)