Bavachin Protects Human Aortic Smooth Muscle Cells Against -Glycerophosphate-Mediated Vascular Calcification and Apoptosis Activation of mTOR-Dependent Autophagy and Suppression of -Catenin Signaling.

Hu-Qiang He, Betty Yuen Kwan Law, Ni Zhang, Cong-Ling Qiu, Yuan-Qing Qu, An-Guo Wu, Yu Han, Qi Song, Wen-Lu Zheng, Yong Liu, Yan-Zheng He, Vincent Kam Wai Wong
Author Information
  1. Hu-Qiang He: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  2. Betty Yuen Kwan Law: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  3. Ni Zhang: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  4. Cong-Ling Qiu: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  5. Yuan-Qing Qu: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  6. An-Guo Wu: Department of Thoracic and Cardial Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
  7. Yu Han: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  8. Qi Song: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  9. Wen-Lu Zheng: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.
  10. Yong Liu: Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
  11. Yan-Zheng He: Department of Vascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China.
  12. Vincent Kam Wai Wong: Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China.

Abstract

Vascular calcification is a major complication of cardiovascular disease and chronic renal failure. Autophagy help to maintain a stable internal and external environment that is important for modulating arteriosclerosis, but its pathogenic mechanism is far from clear. Here, we aimed to identify the bioactive compounds from traditional Chinese medicines (TCM) that exhibit an anti-arteriosclerosis effect. In β-glycerophosphate (β-GP)-stimulated human aortic smooth muscle cells (HASMCs), the calcium level was increased and the expression of the calcification-related proteins OPG, OPN, Runx2, and BMP2 were all up-regulated, followed by autophagy induction and apoptosis. Meanwhile, we further revealed that β-GP induced apoptosis of human osteoblasts and promoted differentiation of osteoblasts through Wnt/β-catenin signaling. Bavachin, a natural compound from , dose-dependently reduced the level of intracellular calcium and the expression of calcification-related proteins OPG, OPN, Runx2 and BMP2, thus inhibiting cell apoptosis. In addition, bavachin increased LC3-II and beclin1 expression, along with intracellular LC3-II puncta formation, which autophagy induction is Atg7-dependent and is regulated by suppression of mTOR signaling. Furthermore, addition of autophagy inhibitor, wortmannin (WM) attenuated the inhibitory effect of bavachin on β-GP-induced calcification and apoptosis in HASMCs. Collectively, the present study revealed that bavachin protects HASMCs against apoptosis and calcification by activation of the Atg7/mTOR-autophagy pathway and suppression of the β-catenin signaling, our findings provide a potential clinical application for bavachin in the therapy of cardiovascular disease.

Keywords

References

  1. Annu Rev Cell Dev Biol. 2018 Oct 6;34:311-332 [PMID: 30089222]
  2. Can J Cardiol. 2014 May;30(5):568-75 [PMID: 24518659]
  3. Trends Cardiovasc Med. 2012 May;22(4):93-8 [PMID: 23040839]
  4. Int J Mol Sci. 2013 Aug 28;14(9):17643-63 [PMID: 23989608]
  5. Essays Biochem. 2017 Dec 12;61(6):721-732 [PMID: 29233881]
  6. Sci Rep. 2018 Aug 10;8(1):11954 [PMID: 30097618]
  7. Saudi Pharm J. 2016 Sep;24(5):547-553 [PMID: 27752226]
  8. Circ Res. 2012 Aug 17;111(5):543-52 [PMID: 22773442]
  9. Arterioscler Thromb Vasc Biol. 2017 Feb;37(2):191-204 [PMID: 27908890]
  10. J Diabetes Res. 2016;2016:6809703 [PMID: 27547766]
  11. J Am Heart Assoc. 2018 Feb 8;7(4): [PMID: 29437603]
  12. Medicine (Baltimore). 2018 Mar;97(12):e0172 [PMID: 29561429]
  13. Curr Opin Cell Biol. 2008 Apr;20(2):119-25 [PMID: 18339531]
  14. J Cell Mol Med. 2019 Jan;23(1):177-193 [PMID: 30353656]
  15. Cells. 2018 May 05;7(5):null [PMID: 29734735]
  16. Kidney Int. 2013 Jun;83(6):984-6 [PMID: 23727998]
  17. Ther Apher Dial. 2018 Oct;22(5):519-529 [PMID: 29974642]
  18. Cell Physiol Biochem. 2014;33(6):1945-53 [PMID: 25012146]
  19. Circ Res. 2011 Jun 24;109(1):e1-12 [PMID: 21566214]
  20. Nat Rev Mol Cell Biol. 2014 Feb;15(2):81-94 [PMID: 24401948]
  21. Cell Biosci. 2019 Jan 3;9:1 [PMID: 30622695]
  22. Nat Struct Mol Biol. 2012 Dec;19(12):1242-9 [PMID: 23142976]
  23. J Am Soc Nephrol. 2004 Dec;15(12):2959-64 [PMID: 15579497]
  24. Autophagy. 2014 Jul;10(7):1179-92 [PMID: 24905352]
  25. Circulation. 2019 Mar 5;139(10):e56-e528 [PMID: 30700139]
  26. Front Immunol. 2018 Aug 14;9:1866 [PMID: 30154792]
  27. Nat Rev Endocrinol. 2012 Sep;8(9):529-43 [PMID: 22473330]
  28. J Bone Miner Res. 2016 Oct;31(10):1865-1876 [PMID: 27074284]
  29. Sci Rep. 2017 Jun 14;7(1):3549 [PMID: 28615727]
  30. Cardiovasc Res. 2018 Mar 15;114(4):622-634 [PMID: 29360955]
  31. Phytomedicine. 2018 Feb 1;40:37-47 [PMID: 29496173]
  32. Environ Toxicol. 2016 Sep;31(9):1113-20 [PMID: 25736028]
  33. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):E478-86 [PMID: 25605937]
  34. Sci Rep. 2016 May 09;6:25578 [PMID: 27156573]
  35. Environ Toxicol. 2018 Jul;33(7):770-788 [PMID: 29667321]
  36. Exp Cell Res. 2016 Jul 15;345(2):206-17 [PMID: 27321958]
  37. Mol Cell Biochem. 2017 Sep;433(1-2):149-159 [PMID: 28386842]
  38. Toxicol In Vitro. 2008 Feb;22(1):232-9 [PMID: 17904330]
  39. Kidney Int. 2013 Jun;83(6):1042-51 [PMID: 23364520]
  40. Atherosclerosis. 2016 Nov;254:93-101 [PMID: 27716569]
  41. N Engl J Med. 2013 May 9;368(19):1845-6 [PMID: 23656658]
  42. Oncol Rep. 2016 Dec;36(6):3597-3604 [PMID: 27748882]
  43. Sci Rep. 2018 May 3;8(1):6954 [PMID: 29725042]
  44. BMC Cardiovasc Disord. 2014 Mar 01;14:29 [PMID: 24581344]
  45. Cardiovasc Res. 2018 Mar 15;114(4):590-600 [PMID: 29514202]
  46. Bioimpacts. 2015;5(1):25-8 [PMID: 25901294]
  47. Biomed Pharmacother. 2018 Apr;100:486-494 [PMID: 29477912]
  48. Trends Cardiovasc Med. 2015 May;25(4):267-74 [PMID: 25435520]

Word Cloud

Created with Highcharts 10.0.0apoptosiscalcificationautophagybavachinHASMCsexpressionsignalingVascularcardiovasculardiseaseAutophagyeffectβ-GPhumancalciumlevelincreasedcalcification-relatedproteinsOPGOPNRunx2BMP2inductionrevealedosteoblastsWnt/β-cateninBavachinintracellularadditionLC3-IIsuppressionApoptosismajorcomplicationchronicrenalfailurehelpmaintainstableinternalexternalenvironmentimportantmodulatingarteriosclerosispathogenicmechanismfarclearaimedidentifybioactivecompoundstraditionalChinesemedicinesTCMexhibitanti-arteriosclerosisβ-glycerophosphate-stimulatedaorticsmoothmusclecellsup-regulatedfollowedMeanwhileinducedpromoteddifferentiationnaturalcompounddose-dependentlyreducedthusinhibitingcellbeclin1alongpunctaformationAtg7-dependentregulatedmTORFurthermoreinhibitorwortmanninWMattenuatedinhibitoryβ-GP-inducedCollectivelypresentstudyprotectsactivationAtg7/mTOR-autophagypathwayβ-cateninfindingsprovidepotentialclinicalapplicationtherapyProtectsHumanAorticSmoothMuscleCells-Glycerophosphate-MediatedCalcificationActivationmTOR-DependentSuppression-CateninSignalingAtg7vascular

Similar Articles

Cited By