α-Klotho Expression in Mouse Tissues Following Acute Exhaustive Exercise.

Zhijian Rao, Lifang Zheng, Hu Huang, Yu Feng, Rengfei Shi
Author Information
  1. Zhijian Rao: College of Physical Education, Shanghai Normal University, Shanghai, China.
  2. Lifang Zheng: School of Kinesiology, Shanghai University of Sport, Shanghai, China.
  3. Hu Huang: Department of Kinesiology and Physiology, East Carolina University, Greenville, NC, United States.
  4. Yu Feng: School of Kinesiology, Shanghai University of Sport, Shanghai, China.
  5. Rengfei Shi: School of Kinesiology, Shanghai University of Sport, Shanghai, China.

Abstract

α-Klotho, a multifunctional protein, has been demonstrated to protect tissues from injury via anti-oxidation and anti-inflammatory effects. The expression of α-klotho is regulated by several physiological and pathological factors, including acute inflammatory stress, oxidative stress, hypertension, and chronic renal failure. Exhaustive exercise has been reported to result in tissue damage, which is induced by inflammation, oxidative stress, and energy metabolism disturbance. However, little is known about the effects of exhaustive exercise on the expression of α-klotho in various tissues. To determine the effects, the treadmill exhaustion test in mice was performed and the mice were sacrificed at different time points following exhaustive exercise. Our results confirmed that the full-length (130 kDa) and shorter-form (65 kDa) α-klotho were primarily expressed in the kidneys. Moreover, we found that, except for the kidneys and brain, other tissues primarily expressed the shorter-form α-klotho, including liver, which was in contrast to previous reports. Furthermore, the shorter-form α-klotho was decreased immediately following the acute exhaustive exercise and was then restored to the pre-exercise level or even higher levels in the next few days. Our results indicate that α-klotho may play a key role in the body exhaustion and recovery following exhaustive exercise.

Keywords

References

  1. Nephron Exp Nephrol. 2005;101(2):e67-74 [PMID: 15976510]
  2. Cell Oncol (Dordr). 2013 Apr;36(2):121-9 [PMID: 23248036]
  3. Lung Cancer. 2011 Jun;72(3):355-9 [PMID: 21075474]
  4. Endocr Rev. 2015 Apr;36(2):174-93 [PMID: 25695404]
  5. Neurobiol Aging. 2012 Jul;33(7):1483.e25-30 [PMID: 22245317]
  6. Am J Pathol. 2014 Mar;184(3):827-41 [PMID: 24412515]
  7. Front Endocrinol (Lausanne). 2017 Nov 17;8:323 [PMID: 29250031]
  8. Heliyon. 2019 Apr 24;5(4):e01494 [PMID: 31049427]
  9. Br J Sports Med. 2017 Mar;51(6):549-550 [PMID: 27251899]
  10. Sci Rep. 2018 May 30;8(1):8429 [PMID: 29849175]
  11. J Histochem Cytochem. 2012 Sep;60(9):638-57 [PMID: 22723526]
  12. Int J Med Sci. 2016 Feb 05;13(2):147-53 [PMID: 26941574]
  13. Biochem Biophys Res Commun. 2016 May 13;473(4):845-852 [PMID: 27037022]
  14. Am J Physiol Heart Circ Physiol. 2014 Feb;306(3):H348-55 [PMID: 24322608]
  15. Circulation. 2014 Feb 18;129(7):798-810 [PMID: 24550551]
  16. J Neurosci. 2015 Feb 11;35(6):2358-71 [PMID: 25673831]
  17. Kidney Int. 2012 Mar;81(6):539-47 [PMID: 22217880]
  18. Brain Res. 2013 Aug 21;1527:1-14 [PMID: 23838326]
  19. Biochim Biophys Acta Mol Basis Dis. 2018 Jan;1864(1):238-251 [PMID: 28982613]
  20. Nat Rev Nephrol. 2019 Jan;15(1):27-44 [PMID: 30455427]
  21. Nat Commun. 2015 Apr 29;6:7035 [PMID: 25923845]
  22. Neurosci Lett. 2006 Oct 2;406(1-2):148-51 [PMID: 16905254]
  23. PLoS One. 2015 Oct 09;10(10):e0139914 [PMID: 26452228]
  24. J Circ Biomark. 2018 Aug 16;7:1849454418794582 [PMID: 30147756]
  25. Metabolism. 2000 Sep;49(9):1118-23 [PMID: 11016890]
  26. Sci Rep. 2017 Sep 7;7(1):10830 [PMID: 28883534]
  27. Biochem Biophys Res Commun. 1998 Oct 29;251(3):920-5 [PMID: 9791011]
  28. Life Sci. 2016 Jan 1;144:94-102 [PMID: 26593401]
  29. Front Pharmacol. 2019 Mar 05;10:175 [PMID: 30890937]
  30. Sci Rep. 2015 Jan 06;5:7645 [PMID: 25561289]
  31. Hum Mol Genet. 2016 Jun 15;25(12):2465-2482 [PMID: 27154199]
  32. Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19796-801 [PMID: 18056631]
  33. J Biol Chem. 2007 Sep 14;282(37):26687-95 [PMID: 17623664]
  34. Int J Cardiol. 2015 Mar 1;182:258-66 [PMID: 25585360]
  35. J Endocrinol. 2019 Mar 1;:null [PMID: 30875680]
  36. Sci Rep. 2018 Oct 2;8(1):14625 [PMID: 30279507]
  37. Pflugers Arch. 2010 Feb;459(3):465-73 [PMID: 19756714]
  38. J Am Soc Nephrol. 2011 Jul;22(7):1315-25 [PMID: 21719790]
  39. Nutrients. 2018 Nov 07;10(11):null [PMID: 30405021]
  40. FASEB J. 2019 Feb;33(2):2694-2706 [PMID: 30307767]
  41. Nat Commun. 2018 Nov 19;9(1):4859 [PMID: 30451844]
  42. Exp Ther Med. 2018 Oct;16(4):3511-3517 [PMID: 30233703]
  43. PLoS One. 2015 May 11;10(5):e0125271 [PMID: 25961830]
  44. Med Sci Sports Exerc. 2016 Oct;48(10):1917-24 [PMID: 27187099]
  45. Endocrinology. 2006 Aug;147(8):3835-42 [PMID: 16709611]
  46. J Clin Endocrinol Metab. 2015 Oct;100(10):E1308-18 [PMID: 26280509]
  47. Nature. 1997 Nov 6;390(6655):45-51 [PMID: 9363890]
  48. Food Nutr Res. 2017 Jun 1;61(1):1333390 [PMID: 28659745]
  49. Biochem Biophys Res Commun. 1998 Jan 26;242(3):626-30 [PMID: 9464267]
  50. Lung Cancer. 2011 Nov;74(2):332-7 [PMID: 21529984]
  51. J Sports Sci. 2019 Oct;37(19):2175-2183 [PMID: 31164040]
  52. Braz J Med Biol Res. 2018 Oct 04;51(11):e7702 [PMID: 30304134]

Word Cloud

Created with Highcharts 10.0.0α-klothoexerciseexhaustivetissueseffectsstressfollowingshorter-formα-KlothoexpressionincludingacuteoxidativeExhaustivetissueexhaustionmiceresultskDaprimarilyexpressedkidneyslivermultifunctionalproteindemonstratedprotectinjuryviaanti-oxidationanti-inflammatoryregulatedseveralphysiologicalpathologicalfactorsinflammatoryhypertensionchronicrenalfailurereportedresultdamageinducedinflammationenergymetabolismdisturbanceHoweverlittleknownvariousdeterminetreadmilltestperformedsacrificeddifferenttimepointsconfirmedfull-length13065MoreoverfoundexceptbraincontrastpreviousreportsFurthermoredecreasedimmediatelyrestoredpre-exerciselevelevenhigherlevelsnextdaysindicatemayplaykeyrolebodyrecoveryExpressionMouseTissuesFollowingAcuteExerciseadiposeskeletalmuscle

Similar Articles

Cited By