Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties.

Brian Chang, Chelsea Reighard, Colleen Flanagan, Scott Hollister, David Zopf
Author Information
  1. Brian Chang: University of Michigan Medical School, 1500 East Hospital Drive, Ann Arbor, MI 48109, USA.
  2. Chelsea Reighard: University of Michigan Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, 1000 Wall Street, Ann Arbor, MI 48105, USA.
  3. Colleen Flanagan: Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA.
  4. Scott Hollister: Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA 30332, USA. Electronic address: scott.hollister@bme.gatech.edu.
  5. David Zopf: Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel Blvd., Ann Arbor, MI 48109, USA; Department of Otolaryngology - Head and Neck Surgery, CS Mott Children's Hospital, 1540 East Hospital Drive, Ann Arbor, MI 48109, USA. Electronic address: davidzop@med.umich.edu.

Abstract

Nasal reconstruction frequently requires donor cartilage and tissue, and ideally, donor tissue will closely emulate native nasal cartilage mechanics. Tissue engineering scaffolds, especially 3D printed scaffolds, have been proposed for nasal reconstruction, and the success of these constructs may depend on how well scaffolds reflect native nasal cartilage mechanical properties. Therefore, consistent and comprehensive characterization of native nasal cartilage mechanical properties is a foundation for nasal cartilage tissue engineering and reconstruction in general by providing design targets for reconstructive materials. Our group has previously shown the feasibility of producing scaffolds with porous architecture permitting chondrocyte growth and cartilage production. In this study, we determined the nonlinear and stress relaxation behavior of human nasal cartilage under unconfined compression. We then fit this experimental data to nonlinear elastic, nonlinear viscoelastic and nonlinear biphasic constitutive models. The resulting coefficients will provide design targets for nasal reconstruction and scaffold design as well as outcome measures for assessment of tissue engineered nasal cartilage.

Keywords

References

  1. Ann Surg. 2006 Dec;244(6):978-85; discussion 985 [PMID: 17122623]
  2. Arch Facial Plast Surg. 2007 Jul-Aug;9(4):264-70 [PMID: 17638761]
  3. J Mater Sci Mater Med. 2016 Jan;27(1):11 [PMID: 26676857]
  4. Am J Rhinol. 2006 Sep-Oct;20(5):496-501 [PMID: 17063745]
  5. Laryngoscope. 1985 May;95(5):523-33 [PMID: 3990484]
  6. Am J Rhinol. 2005 Nov-Dec;19(6):617-22 [PMID: 16402652]
  7. JAMA Facial Plast Surg. 2015 Nov-Dec;17(6):428-32 [PMID: 26379117]
  8. Annu Rev Biomed Eng. 2017 Jun 21;19:279-299 [PMID: 28633565]
  9. Otolaryngol Head Neck Surg. 2013 Apr;148(4):576-81 [PMID: 23322630]
  10. Mayo Clin Proc. 2015 Jan;90(1):148-58 [PMID: 25572199]
  11. J Morphol. 2009 Oct;270(10):1209-18 [PMID: 19434723]
  12. Arch Facial Plast Surg. 2002 Apr-Jun;4(2):82-91 [PMID: 12020201]
  13. Eur Arch Otorhinolaryngol. 2005 Dec;262(12):993-7 [PMID: 16075238]
  14. Laryngoscope. 2004 Jan;114(1):38-45 [PMID: 14709992]
  15. J Biomech Eng. 2012 Jan;134(1):011005 [PMID: 22482660]
  16. Arch Biochem Biophys. 2002 Jul 1;403(1):132-40 [PMID: 12061810]
  17. Laryngoscope. 2015 Aug;125(8):E262-8 [PMID: 25891012]
  18. Otolaryngol Head Neck Surg. 2012 Mar;146(3):377-81 [PMID: 22063734]
  19. J Biomech. 2013 Sep 3;46(13):2137-44 [PMID: 23915577]
  20. Plast Reconstr Surg. 2015 Feb;135(2):451-458 [PMID: 25357157]
  21. J Biomech. 2014 Jan 3;47(1):154-61 [PMID: 24268797]
  22. Rhinology. 2014 Jun;52(2):167-71 [PMID: 24932630]

Grants

  1. TL1 TR002242/NCATS NIH HHS

MeSH Term

Biomechanical Phenomena
Chondrocytes
Humans
Kinetics
Mechanical Phenomena
Nasal Cartilages
Nonlinear Dynamics
Porosity
Pressure
Stress, Mechanical

Word Cloud

Created with Highcharts 10.0.0cartilagenasaltissuenonlinearreconstructionscaffoldsNasalnativeengineeringmechanicalpropertiesdesigndonorwillwelltargetshumanfrequentlyrequiresideallycloselyemulatemechanicsTissueespecially3DprintedproposedsuccessconstructsmaydependreflectThereforeconsistentcomprehensivecharacterizationfoundationgeneralprovidingreconstructivematerialsgrouppreviouslyshownfeasibilityproducingporousarchitecturepermittingchondrocytegrowthproductionstudydeterminedstressrelaxationbehaviorunconfinedcompressionfitexperimentaldataelasticviscoelasticbiphasicconstitutivemodelsresultingcoefficientsprovidescaffoldoutcomemeasuresassessmentengineeredEvaluationratedependentBiomechanicsCartilagecomputationalmodelingNonlinearelasticity

Similar Articles

Cited By