Yeast-encapsulated essential oils: a new perspective as an environmentally friendly larvicide.

Michael J Workman, Bruno Gomes, Ju-Lin Weng, Linnea K Ista, Camila P Jesus, Mariana R David, Marcelo Ramalho-Ortigao, Fernando A Genta, Scott K Matthews, Ravi Durvasula, Ivy Hurwitz
Author Information
  1. Michael J Workman: Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA. ORCID
  2. Bruno Gomes: Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC-Fiocruz), Rio de Janeiro, Brazil. ORCID
  3. Ju-Lin Weng: Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD, USA. ORCID
  4. Linnea K Ista: Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA. ORCID
  5. Camila P Jesus: Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC-Fiocruz), Rio de Janeiro, Brazil.
  6. Mariana R David: Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz (IOC-Fiocruz), Rio de Janeiro, Brazil.
  7. Marcelo Ramalho-Ortigao: Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, MD, USA. ORCID
  8. Fernando A Genta: Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz (IOC-Fiocruz), Rio de Janeiro, Brazil.
  9. Scott K Matthews: Department of General Preventive Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
  10. Ravi Durvasula: Loyola University Stritch School of Medicine, Maywood, IL, USA.
  11. Ivy Hurwitz: Center for Global Health, University of New Mexico Health Sciences Center, Albuquerque, NM, USA. ihurwitz@salud.unm.edu.

Abstract

BACKGROUND: Effective mosquito control approaches incorporate both adult and larval stages. For the latter, physical, biological, and chemical control have been used with varying results. Successful control of larvae has been demonstrated using larvicides including insect growth regulators, e.g. the organophosphate temephos, as well as various entomopathogenic microbial species. However, a variety of health and environmental issues are associated with some of these. Laboratory trials of essential oils (EO) have established the larvicidal activity of these substances, but there are currently no commercially available EO-based larvicides. Here we report on the development of a new approach to mosquito larval control using a novel, yeast-based delivery system for EO.
METHODS: Food-grade orange oil (OO) was encapsulated into yeast cells following an established protocol. To prevent environmental contamination, a proprietary washing strategy was developed to remove excess EO that is adsorbed to the cell exterior during the encapsulation process. The OO-loaded yeast particles were then characterized for OO loading, and tested for efficacy against Aedes aegypti larvae.
RESULTS: The composition of encapsulated OO extracted from the yeast microparticles was demonstrated not to differ from that of un-encapsulated EO when analyzed by high performance liquid chromatography. After lyophilization, the oil in the larvicide comprised 26-30 percentage weight (wt%), and is consistent with the 60-65% reduction in weight observed after the drying process. Quantitative bioassays carried with Liverpool and Rockefeller Ae. aegypti strains in three different laboratories presented LD of 5.1 (95% CI: 4.6-5.6) to 27.6 (95% CI: 26.4-28.8) mg/l, for L1 and L3/L4 mosquito larvae, respectively. LD ranged between 18.9 (95% CI: 16.4-21.7) mg/l (L1 larvae) to 76.7 (95% CI: 69.7-84.3) mg/l (L3/L4 larvae).
CONCLUSIONS: The larvicide based on OO encapsulated in yeast was shown to be highly active (LD < 50 mg/l) against all larval stages of Ae. aegypti. These results demonstrate its potential for incorporation in an integrated approach to larval source management of Ae. aegypti. This novel approach can enable development of affordable control strategies that may have significant impact on global health.

Keywords

References

  1. Neotrop Entomol. 2017 Jun;46(3):243-255 [PMID: 28401481]
  2. Parasitol Res. 2016 Apr;115(4):1691-703 [PMID: 26796022]
  3. J Agric Food Chem. 2019 May 1;67(17):4746-4753 [PMID: 30966749]
  4. Bioresour Technol. 2006 Dec;97(18):2481-4 [PMID: 16815011]
  5. PLoS Negl Trop Dis. 2015 Jan 15;9(1):e0003406 [PMID: 25590626]
  6. PLoS Negl Trop Dis. 2017 Jul 20;11(7):e0005625 [PMID: 28727779]
  7. Mem Inst Oswaldo Cruz. 2016 Jul 4;111(7):443-9 [PMID: 27384083]
  8. BMC Dev Biol. 2008 Sep 13;8:82 [PMID: 18789161]
  9. Antiviral Res. 2010 Feb;85(2):328-45 [PMID: 19857523]
  10. Front Physiol. 2019 Apr 09;10:152 [PMID: 31024326]
  11. Mem Inst Oswaldo Cruz. 2003 Jun;98(4):569-71 [PMID: 12937776]
  12. PLoS One. 2016 Mar 23;11(3):e0151403 [PMID: 27007411]
  13. Insect Biochem Mol Biol. 2004 Jul;34(7):653-65 [PMID: 15242706]
  14. Trends Plant Sci. 2016 Dec;21(12):1000-1007 [PMID: 27789158]
  15. J Insect Sci. 2004;4:19 [PMID: 15861235]
  16. Southeast Asian J Trop Med Public Health. 2005 Nov;36(6):1412-22 [PMID: 16610643]
  17. Food Chem Toxicol. 2008 Feb;46(2):446-75 [PMID: 17996351]
  18. Mem Inst Oswaldo Cruz. 2004 Aug;99(5):541-4 [PMID: 15543421]
  19. Parasitol Res. 2014 Jul;113(7):2647-54 [PMID: 24781026]
  20. Trop Biomed. 2006 Dec;23(2):180-5 [PMID: 17322820]
  21. J Agric Food Chem. 2004 Jul 14;52(14):4395-400 [PMID: 15237942]
  22. Parasitol Res. 2012 Jul;111(1):173-8 [PMID: 22231268]
  23. Parasitol Res. 2012 Oct;111(4):1757-69 [PMID: 22797605]
  24. Asian Pac J Trop Biomed. 2012 Feb;2(2):152-5 [PMID: 23569887]
  25. J Econ Entomol. 2016 Feb;109(1):360-5 [PMID: 26357845]
  26. Bioresour Technol. 2003 Aug;89(1):99-102 [PMID: 12676507]
  27. Parasitol Res. 2014 Feb;113(2):565-92 [PMID: 24265058]
  28. Malar J. 2019 Feb 26;18(1):55 [PMID: 30808348]
  29. Pestic Biochem Physiol. 2018 Oct;151:73-75 [PMID: 30704716]
  30. J Colloid Interface Sci. 2015 Oct 15;456:190-6 [PMID: 26125515]
  31. PLoS Negl Trop Dis. 2017 Jul 27;11(7):e0005632 [PMID: 28749942]
  32. J Microencapsul. 1998 Nov-Dec;15(6):761-73 [PMID: 9818954]
  33. Parasit Vectors. 2014 Sep 04;7:426 [PMID: 25190294]
  34. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Nov;130(3):325-37 [PMID: 11701389]
  35. J Am Mosq Control Assoc. 1994 Sep;10(3):344-7 [PMID: 7807075]
  36. J Am Mosq Control Assoc. 1991 Jun;7(2):210-37 [PMID: 1680152]

Grants

  1. 200-2017-93140/CDC HHS

MeSH Term

Aedes
Animals
Cell Encapsulation
Green Chemistry Technology
Insecticides
Larva
Mosquito Control
Mosquito Vectors
Oils, Volatile
Plant Oils
Saccharomyces cerevisiae

Chemicals

Insecticides
Oils, Volatile
Plant Oils
orange oil

Word Cloud

Created with Highcharts 10.0.0controllarvaelarvalEOOOyeastaegypti95%CI:mosquitoapproachoilencapsulatedlarvicideAemg/lstagesresultsdemonstratedusinglarvicideshealthenvironmentalessentialestablisheddevelopmentnewnovelprocessweightLD6L1L3/L47BACKGROUND:EffectiveapproachesincorporateadultlatterphysicalbiologicalchemicalusedvaryingSuccessfulincludinginsectgrowthregulatorsegorganophosphatetemephoswellvariousentomopathogenicmicrobialspeciesHowevervarietyissuesassociatedLaboratorytrialsoilslarvicidalactivitysubstancescurrentlycommerciallyavailableEO-basedreportyeast-baseddeliverysystemMETHODS:Food-gradeorangecellsfollowingprotocolpreventcontaminationproprietarywashingstrategydevelopedremoveexcessadsorbedcellexteriorencapsulationOO-loadedparticlescharacterizedloadingtestedefficacyAedesRESULTS:compositionextractedmicroparticlesdifferun-encapsulatedanalyzedhighperformanceliquidchromatographylyophilizationcomprised26-30percentagewt%consistent60-65%reductionobserveddryingQuantitativebioassayscarriedLiverpoolRockefellerstrainsthreedifferentlaboratoriespresented5146-527264-288respectivelyranged189164-2176697-843CONCLUSIONS:basedshownhighlyactiveLD < 50 mg/ldemonstratepotentialincorporationintegratedsourcemanagementcanenableaffordablestrategiesmaysignificantimpactglobalYeast-encapsulatedoils:perspectiveenvironmentallyfriendlyEncapsulationEssentialLarvicideSaccharomycescerevisiae

Similar Articles

Cited By