Dynamic force measurements on swimming cells using micropipette force sensors.

Thomas J Böddeker, Stefan Karpitschka, Christian T Kreis, Quentin Magdelaine, Oliver Bäumchen
Author Information
  1. Thomas J Böddeker: Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.
  2. Stefan Karpitschka: Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.
  3. Christian T Kreis: Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.
  4. Quentin Magdelaine: Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.
  5. Oliver Bäumchen: Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, 37077 Göttingen, Germany.

Abstract

Flagella and cilia are cellular appendages that inherit essential functions of microbial life including sensing and navigating the environment. In order to propel a swimming microorganism they displace the surrounding fluid by means of periodic motions, while precisely timed modulations of their beating patterns enable the cell to steer towards or away from specific locations. Characterizing the dynamic forces, however, is challenging and typically relies on indirect experimental approaches. Here, we present direct measurements of the dynamic forces of motile cells in controlled environments. The experiments are based on partially aspirating a living microorganism at the tip of a micropipette force sensor and optically recording the micropipette's position fluctuations with high temporal and sub-pixel spatial resolution. Spectral signal analysis allows for isolating the cell-generated dynamic forces caused by the periodic motion of the flagella from background noise. We provide an analytic, elasto-hydrodynamic model for the micropipette force sensor and describe how to obtain the micropipette's full frequency response function from a dynamic force calibration. Using this approach, we measure the amplitude of the oscillatory forces during the swimming activity of individual cells of 26 ± 5 pN, resulting from the coordinated flagellar beating with a frequency of 49 ± 5 Hz. This dynamic micropipette force sensor technique generalizes the applicability of micropipettes as force sensors from static to dynamic force measurements, yielding a force sensitivity in the piconewton range. In addition to measurements in bulk liquid environment, we study the dynamic forces of the biflagellated microswimmer in the vicinity of a solid/liquid interface. As we gradually decrease the distance of the swimming microbe to the interface, we measure a significantly enhanced force transduction at distances larger than the maximum extent of the beating flagella, highlighting the importance of hydrodynamic interactions for scenarios in which flagellated microorganisms encounter surfaces.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1187-92 [PMID: 23297240]
  2. Elife. 2014 Jul 29;3:e02750 [PMID: 25073925]
  3. J R Soc Interface. 2014 Feb 26;11(94):20131160 [PMID: 24573332]
  4. Essays Biochem. 2018 Dec 7;62(6):829-838 [PMID: 30464007]
  5. Nature. 1975 Apr 3;254(5499):389-92 [PMID: 1090851]
  6. Biophys J. 2010 Dec 1;99(11):3555-62 [PMID: 21112279]
  7. Nature. 1999 Jan 14;397(6715):168-71 [PMID: 9923680]
  8. Cell Motil Cytoskeleton. 1998;41(4):297-307 [PMID: 9858155]
  9. Nat Protoc. 2019 Feb;14(2):594-615 [PMID: 30697007]
  10. Sci Rep. 2014 Oct 01;4:6515 [PMID: 25269514]
  11. Curr Biol. 2013 Mar 18;23(6):443-52 [PMID: 23453951]
  12. Biophys J. 1979 Jan;25(1):113-27 [PMID: 262381]
  13. Eur Phys J E Soft Matter. 2009 Oct;30(2):117-21 [PMID: 19777278]
  14. Nature. 1972 Oct 27;239(5374):500-4 [PMID: 4563019]
  15. Cell Motil Cytoskeleton. 2005 Jul;61(3):137-44 [PMID: 15887297]
  16. Phys Rev Lett. 2018 Feb 9;120(6):068002 [PMID: 29481277]
  17. Cell Motil Cytoskeleton. 1995;31(2):130-9 [PMID: 7553906]
  18. Soft Matter. 2019 Apr 3;15(14):3027-3035 [PMID: 30887973]
  19. Biophys J. 2011 Jun 8;100(11):2716-25 [PMID: 21641317]
  20. Proc Natl Acad Sci U S A. 2013 Nov 5;110(45):18058-63 [PMID: 24145440]
  21. Nature. 1984 Oct 25-31;311(5988):756-9 [PMID: 6493336]
  22. Phys Rev Lett. 2015 Dec 18;115(25):258102 [PMID: 26722946]
  23. Soft Matter. 2018 Feb 14;14(6):894-900 [PMID: 29303200]
  24. Phys Rev Lett. 2010 Oct 15;105(16):168102 [PMID: 21231018]
  25. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 May;89(5):050701 [PMID: 25353731]
  26. Nat Methods. 2009 Nov;6(11):831-5 [PMID: 19801991]
  27. Proc Natl Acad Sci U S A. 2013 Mar 19;110(12):4528-33 [PMID: 23460699]
  28. Phys Rev Lett. 2014 Dec 5;113(23):238103 [PMID: 25526162]
  29. Nature. 1987 Dec 24-31;330(6150):769-71 [PMID: 3320757]
  30. Science. 2009 Jul 24;325(5939):487-90 [PMID: 19628868]
  31. Phys Rev Lett. 2010 Oct 15;105(16):168101 [PMID: 21231017]
  32. Phys Rev Lett. 2009 Oct 16;103(16):168103 [PMID: 19905728]

MeSH Term

Chlamydomonas
Chlamydomonas reinhardtii
Flagella
Hydrodynamics
Swimming

Word Cloud

Created with Highcharts 10.0.0forcedynamicforcesmeasurementsswimmingmicropipettebeatingcellssensorflagellaenvironmentmicroorganismperiodiccellmicropipette'sfrequencymeasure±5sensorsinterfaceFlagellaciliacellularappendagesinheritessentialfunctionsmicrobiallifeincludingsensingnavigatingorderpropeldisplacesurroundingfluidmeansmotionspreciselytimedmodulationspatternsenablesteertowardsawayspecificlocationsCharacterizinghoweverchallengingtypicallyreliesindirectexperimentalapproachespresentdirectmotilecontrolledenvironmentsexperimentsbasedpartiallyaspiratinglivingtipopticallyrecordingpositionfluctuationshightemporalsub-pixelspatialresolutionSpectralsignalanalysisallowsisolatingcell-generatedcausedmotionbackgroundnoiseprovideanalyticelasto-hydrodynamicmodeldescribeobtainfullresponsefunctioncalibrationUsingapproachamplitudeoscillatoryactivityindividual26pNresultingcoordinatedflagellar49Hztechniquegeneralizesapplicabilitymicropipettesstaticyieldingsensitivitypiconewtonrangeadditionbulkliquidstudybiflagellatedmicroswimmervicinitysolid/liquidgraduallydecreasedistancemicrobesignificantlyenhancedtransductiondistanceslargermaximumextenthighlightingimportancehydrodynamicinteractionsscenariosflagellatedmicroorganismsencountersurfacesDynamicusingChlamydomonasactivemattermotilitymicroswimmers

Similar Articles

Cited By (9)