The Ebola Virus Nucleoprotein Recruits the Nuclear RNA Export Factor NXF1 into Inclusion Bodies to Facilitate Viral Protein Expression.

Lisa Wendt, Janine Brandt, Bianca S Bodmer, Sven Reiche, Marie Luisa Schmidt, Shelby Traeger, Thomas Hoenen
Author Information
  1. Lisa Wendt: Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany.
  2. Janine Brandt: Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany.
  3. Bianca S Bodmer: Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany.
  4. Sven Reiche: Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany.
  5. Marie Luisa Schmidt: Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany.
  6. Shelby Traeger: Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
  7. Thomas Hoenen: Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493 Greifswald, Germany. ORCID

Abstract

Ebola virus (EBOV) causes severe outbreaks of viral hemorrhagic fever in humans. While virus-host interactions are promising targets for antivirals, there is only limited knowledge regarding the interactions of EBOV with cellular host factors. Recently, we performed a genome-wide siRNA screen that identified the nuclear RNA export factor 1 (NXF1) as an important host factor for the EBOV life cycle. NXF1 is a major component of the nuclear mRNA export pathway that is usurped by many viruses whose life cycles include nuclear stages. However, the role of NXF1 in the life cycle of EBOV, a virus replicating in cytoplasmic inclusion bodies, remains unknown. In order to better understand the role of NXF1 in the EBOV life cycle, we performed a combination of co-immunoprecipitation and double immunofluorescence assays to characterize the interactions of NXF1 with viral proteins and RNAs. Additionally, using siRNA-mediated knockdown of NXF1 together with functional assays, we analyzed the role of NXF1 in individual aspects of the virus life cycle. With this approach we identified the EBOV nucleoprotein (NP) as a viral interaction partner of NXF1. Further studies revealed that NP interacts with the RNA-binding domain of NXF1 and competes with RNA for this interaction. Co-localization studies showed that RNA binding-deficient, but not wildtype NXF1, accumulates in NP-derived inclusion bodies, and knockdown experiments demonstrated that NXF1 is necessary for viral protein expression, but not for viral RNA synthesis. Finally, our results showed that NXF1 interacts with viral mRNAs, but not with viral genomic RNAs. Based on these results we suggest a model whereby NXF1 is recruited into inclusion bodies to promote the export of viral mRNA:NXF1 complexes from these sites. This would represent a novel function for NXF1 in the life cycle of cytoplasmically replicating viruses, and may provide a basis for new therapeutic approaches against EBOV, and possibly other emerging viruses.

Keywords

References

  1. J Virol. 2001 Jun;75(11):5205-14 [PMID: 11333902]
  2. Antiviral Res. 2013 Sep;99(3):207-13 [PMID: 23751367]
  3. Virus Res. 2009 Mar;140(1-2):8-14 [PMID: 19041915]
  4. FEMS Microbiol Rev. 2016 Jul;40(4):494-519 [PMID: 27268907]
  5. PLoS Pathog. 2013 Jan;9(1):e1003147 [PMID: 23382680]
  6. Genome Med. 2018 Aug 7;10(1):58 [PMID: 30081931]
  7. J Virol. 2016 Nov 14;90(23):10844-10856 [PMID: 27681125]
  8. Mol Cell Biol. 2001 Apr;21(7):2545-54 [PMID: 11259602]
  9. Virology. 1998 Sep 30;249(2):406-17 [PMID: 9791031]
  10. Cell. 2012 Jun 8;149(6):1188-91 [PMID: 22682242]
  11. Antiviral Res. 2019 Oct;170:104569 [PMID: 31356830]
  12. J Gen Virol. 2010 Jun;91(Pt 6):1478-83 [PMID: 20164259]
  13. Virology. 2017 Dec;512:39-47 [PMID: 28915404]
  14. Nat Commun. 2017 Sep 15;8(1):563 [PMID: 28916773]
  15. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5154-9 [PMID: 18364396]
  16. J Biol Chem. 2002 Sep 6;277(36):33099-104 [PMID: 12052831]
  17. Biochem J. 2016 Oct 1;473(19):2911-35 [PMID: 27679854]
  18. PLoS Pathog. 2011 Jan 06;7(1):e1001244 [PMID: 21253573]
  19. Genes Dev. 2004 Jan 15;18(2):210-22 [PMID: 14752011]
  20. RNA. 2000 Jan;6(1):136-58 [PMID: 10668806]
  21. J Biol Chem. 2019 May 3;294(18):7115-7127 [PMID: 30045872]
  22. J Infect Dis. 2015 Oct 1;212 Suppl 2:S316-21 [PMID: 26185094]
  23. Virology. 2010 Jul 20;403(1):56-66 [PMID: 20444481]
  24. Nat Commun. 2012;3:1006 [PMID: 22893130]
  25. Cell Rep. 2015 Jul 7;12(1):140-149 [PMID: 26119732]
  26. J Virol. 2019 Oct 15;93(21): [PMID: 31375591]
  27. Mol Cell. 2019 Jul 25;75(2):310-323.e8 [PMID: 31104896]
  28. Sci Rep. 2017 Aug 9;7(1):7698 [PMID: 28794491]
  29. J Virol. 1999 Mar;73(3):2333-42 [PMID: 9971816]
  30. Eur J Cell Biol. 2015 Jul-Sep;94(7-9):323-31 [PMID: 26070789]
  31. J Virol. 2016 Jul 27;90(16):7268-7284 [PMID: 27252530]
  32. Mol Cell. 2002 Aug;10(2):307-16 [PMID: 12191476]
  33. Mol Cell. 2018 Jan 4;69(1):136-145.e6 [PMID: 29290611]
  34. Mol Cell Biol. 2000 Dec;20(23):8996-9008 [PMID: 11073998]
  35. PLoS Pathog. 2014 Feb 13;10(2):e1003907 [PMID: 24550725]
  36. Mol Cell. 1998 Apr;1(5):649-59 [PMID: 9660949]
  37. Nucleic Acids Res. 2019 May 21;47(9):4778-4797 [PMID: 30864659]
  38. Virol J. 2014 Aug 28;11:154 [PMID: 25168591]
  39. Proc Natl Acad Sci U S A. 2007 Feb 6;104(6):1853-8 [PMID: 17267598]
  40. mBio. 2018 Oct 9;9(5): [PMID: 30301857]
  41. Nat Commun. 2017 Jul 5;8(1):58 [PMID: 28680096]
  42. J Virol. 2013 Nov;87(22):12457-70 [PMID: 24027324]
  43. Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):12289-94 [PMID: 11027311]
  44. Virus Res. 2006 Dec;122(1-2):119-26 [PMID: 16920216]
  45. RNA. 2003 May;9(5):607-17 [PMID: 12702819]
  46. Cell. 2018 Dec 13;175(7):1917-1930.e13 [PMID: 30550789]
  47. Retrovirology. 2014 Sep 12;11:73 [PMID: 25212909]
  48. Cell Rep. 2015 Apr 21;11(3):376-89 [PMID: 25865894]
  49. EMBO J. 1999 May 4;18(9):2593-609 [PMID: 10228171]
  50. Mol Cell. 2001 Sep;8(3):645-56 [PMID: 11583626]
  51. J Virol. 2002 Dec;76(24):12877-89 [PMID: 12438613]
  52. J Virol. 2012 Nov;86(21):11779-88 [PMID: 22915810]
  53. J Virol. 2012 Oct;86(20):11301-10 [PMID: 22875974]
  54. J Virol. 2009 Aug;83(16):7948-58 [PMID: 19494013]
  55. J Mol Biol. 2019 Oct 4;431(21):4290-4320 [PMID: 31260690]
  56. PLoS One. 2014 Oct 31;9(10):e106683 [PMID: 25360769]

MeSH Term

Ebolavirus
Gene Expression Regulation, Viral
HEK293 Cells
Humans
Inclusion Bodies
Nucleocytoplasmic Transport Proteins
Nucleoproteins
RNA, Messenger
RNA, Viral
RNA-Binding Proteins
Viral Proteins
Virus Replication

Chemicals

NXF1 protein, human
Nucleocytoplasmic Transport Proteins
Nucleoproteins
RNA, Messenger
RNA, Viral
RNA-Binding Proteins
Viral Proteins

Word Cloud

Created with Highcharts 10.0.0NXF1viralEBOVlifeRNAcyclevirusexportinclusionbodiesEbolainteractionsnuclearvirusesrolehostperformedidentifiedfactormRNAreplicatingassaysRNAsknockdownNPinteractionstudiesinteractsshowedresultscausessevereoutbreakshemorrhagicfeverhumansvirus-hostpromisingtargetsantiviralslimitedknowledgeregardingcellularfactorsRecentlygenome-widesiRNAscreen1importantmajorcomponentpathwayusurpedmanywhosecyclesincludestagesHowevercytoplasmicremainsunknownorderbetterunderstandcombinationco-immunoprecipitationdoubleimmunofluorescencecharacterizeproteinsAdditionallyusingsiRNA-mediatedtogetherfunctionalanalyzedindividualaspectsapproachnucleoproteinpartnerrevealedRNA-bindingdomaincompetesCo-localizationbinding-deficientwildtypeaccumulatesNP-derivedexperimentsdemonstratednecessaryproteinexpressionsynthesisFinallymRNAsgenomicBasedsuggestmodelwherebyrecruitedpromotemRNA:NXF1complexessitesrepresentnovelfunctioncytoplasmicallymayprovidebasisnewtherapeuticapproachespossiblyemergingVirusNucleoproteinRecruitsNuclearExportFactorInclusionBodiesFacilitateViralProteinExpressionfilovirusliquidorganelles

Similar Articles

Cited By