Acaricidal activity of binary blends of essential oils and selected constituents against Tetranychus urticae in laboratory/greenhouse experiments and the impact on Neoseiulus californicus.

Mário Jorge Cerqueira de Araújo, Cláudio Augusto Gomes da Câmara, Flávia de Souza Born, Marcilio Martins de Moraes
Author Information
  1. Mário Jorge Cerqueira de Araújo: Programa de Pós-graduação em Entomologia Agrícola, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Sn, Recife, PE, 52.171-900, Brazil.
  2. Cláudio Augusto Gomes da Câmara: Programa de Pós-graduação em Entomologia Agrícola, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Sn, Recife, PE, 52.171-900, Brazil. claudio_agc@hotmail.com. ORCID
  3. Flávia de Souza Born: Programa de Pós-graduação em Entomologia Agrícola, Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Sn, Recife, PE, 52.171-900, Brazil.
  4. Marcilio Martins de Moraes: Programa de Pós-graduação em Química, Departamento de Química, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, Sn, Recife, PE, 52.171-900, Brazil.

Abstract

The aim of this study was to test the effectiveness of essential oils form Piper aduncum, Melaleuca leucadendra and Schinus terebinthifolius and their blends by fumigation and residual contact on Tetranychus urticae and its natural enemy, Neoseiulus californicus. Bioassays were performed in a greenhouse with the best blend of the oils and compared to the individual oils and Vertimec® (positive control). The main constituents identified by GC-MS were dillapiole, (E)-nerolidol and limonene in the oils from P. aduncum (76.5%), M. leucadendra (87.3%) and S. terebinthifolius (unripe/ripe fruits, 42.5/34.1%). The P. aduncum and M. leucadendra oils were the most toxic to the pest. Among the blends, the greatest toxicity to T. urticae occurred by residual contact with the M. leucadendra + S. terebinthifolius ripe fruit blend (50/50). The evaluation of the effects on N. californicus showed the compatibility of the oils and blends with the predator mite for use in the integrated management of T. urticae. β-Caryophyllene was the most toxic, independent of the method used. Based on toxicities of 11 oil constituents, the structure-activity relationship of these compounds is also discussed. This study showed that the acaricidal effect of the Piper, Melaleuca and Schinus oils can easily be increased by the binary combination of these oils. The binary blend between the oils of the Melaleuca leaves and ripe Schinus fruit in the greenhouse was effective at controlling the mite after 72 h, exhibiting the same level of toxicity as that found for the positive control (Vertimec 18 EC).

Keywords

References

  1. East Afr Med J. 1992 Apr;69(4):223-6 [PMID: 1644035]
  2. Exp Appl Acarol. 2012 Jun;57(2):139-55 [PMID: 22415244]
  3. J Vector Ecol. 2005 Dec;30(2):295-8 [PMID: 16599166]
  4. Toxicol Lett. 1997 Jun 16;92(1):39-46 [PMID: 9242356]
  5. J Econ Entomol. 2006 Dec;99(6):2015-23 [PMID: 17195668]
  6. Exp Appl Acarol. 2018 Aug;75(4):491-502 [PMID: 30141106]
  7. Bull Entomol Res. 2017 Feb;107(1):49-57 [PMID: 27819201]
  8. Nat Prod Commun. 2012 Jan;7(1):129-32 [PMID: 22428266]
  9. J Food Prot. 2016 Jan;79(1):174-8 [PMID: 26735047]
  10. Vector Borne Zoonotic Dis. 2010 Dec;10(10):1049-54 [PMID: 20455777]
  11. Molecules. 2010 Nov 03;15(11):7825-39 [PMID: 21060291]
  12. J Stored Prod Res. 2000 Jan 15;37(1):93-101 [PMID: 11124373]
  13. J Am Mosq Control Assoc. 2007 Sep;23(3):299-303 [PMID: 17939510]
  14. J Pharm Pharmacol. 2011 Oct;63(10):1368-71 [PMID: 21899553]
  15. J Econ Entomol. 2013 Aug;106(4):1848-54 [PMID: 24020302]
  16. J Econ Entomol. 2010 Aug;103(4):1293-8 [PMID: 20857739]
  17. Exp Appl Acarol. 2007;42(2):107-20 [PMID: 17549586]
  18. J Med Entomol. 2009 Nov;46(6):1420-3 [PMID: 19960690]
  19. Parasit Vectors. 2010 Aug 27;3:79 [PMID: 20799936]
  20. Parasitol Res. 2015 Oct;114(10):3835-53 [PMID: 26149532]
  21. J Econ Entomol. 2011 Apr;104(2):414-9 [PMID: 21510187]
  22. J Agric Food Chem. 2003 Feb 12;51(4):885-9 [PMID: 12568544]
  23. J Econ Entomol. 2011 Aug;104(4):1220-8 [PMID: 21882686]
  24. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Nov;130(3):325-37 [PMID: 11701389]
  25. Curr Pharm Biotechnol. 2012 May;13(6):1004-60 [PMID: 22039795]
  26. Exp Appl Acarol. 2010 Nov;52(3):261-74 [PMID: 20431924]
  27. Chemosphere. 2013 Oct;93(6):1111-6 [PMID: 23830118]

Grants

  1. APQ-1008-1.06/15; APQ-0476-1.06/14/Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
  2. APQ-08601.06/16/Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
  3. IBPG-0984-5.01/10/Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
  4. PQ-302860/2016-9/Conselho Nacional de Desenvolvimento Científico e Tecnológico

MeSH Term

Acaricides
Anacardiaceae
Animals
Melaleuca
Oils, Volatile
Piper
Plant Oils
Tetranychidae

Chemicals

Acaricides
Oils, Volatile
Plant Oils

Word Cloud

Created with Highcharts 10.0.0oilsaduncumMelaleucaleucadendraSchinusblendsurticaePiperterebinthifoliuscalifornicusblendconstituentsMmitebinarystudyessentialresidualcontactTetranychusNeoseiulusgreenhousepositivecontrolPtoxictoxicityTripefruitshowedaimtesteffectivenessformfumigationnaturalenemyBioassaysperformedbestcomparedindividualVertimec®mainidentifiedGC-MSdillapioleE-nerolidollimonene765%873%Sunripe/ripefruits425/341%pestAmonggreatestoccurredleucadendra + S50/50evaluationeffectsNcompatibilitypredatoruseintegratedmanagementβ-CaryophylleneindependentmethodusedBasedtoxicities11oilstructure-activityrelationshipcompoundsalsodiscussedacaricidaleffectcaneasilyincreasedcombinationleaveseffectivecontrolling72 hexhibitinglevelfoundVertimec18ECAcaricidalactivityselectedlaboratory/greenhouseexperimentsimpactBotanicalacaricideterebinthfoliusTwo-spottedspider

Similar Articles

Cited By