The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD.

Qingan Sun, Xiaojun Li, Lisa M Perez, Wanliang Shi, Ying Zhang, James C Sacchettini
Author Information
  1. Qingan Sun: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA. ORCID
  2. Xiaojun Li: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA.
  3. Lisa M Perez: Laboratory for Molecular Simulation, Texas A&M University, College Station, TX, USA. ORCID
  4. Wanliang Shi: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
  5. Ying Zhang: Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA.
  6. James C Sacchettini: Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA. sacchett@tamu.edu.

Abstract

Pyrazinamide has been a mainstay in the multidrug regimens used to treat tuberculosis. It is active against the persistent, non-replicating mycobacteria responsible for the protracted therapy required to cure tuberculosis. Pyrazinamide is a pro-drug that is converted into pyrazinoic acid (POA) by pyrazinamidase, however, the exact target of the drug has been difficult to determine. Here we show the enzyme PanD binds POA in its active site in a manner consistent with competitive inhibition. The active site is not directly accessible to the inhibitor, suggesting the protein must undergo a conformational change to bind the inhibitor. This is consistent with the slow binding kinetics we determined for POA. Drug-resistant mutations cluster near loops that lay on top of the active site. These resistant mutants show reduced affinity and residence time of POA consistent with a model where resistance occurs by destabilizing the closed conformation of the active site.

References

  1. WHO. Global tuberculosis report 2018. Glob. Tuberc. Rep. 2018, 1–231 https://reliefweb.int/report/world/global-tuberculosis-report-2018 (2018).
  2. Zhang, Y., Shi, W., Zhang, W. & Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol Spectr. 2, 1–12 (2013). [PMID: 25530919]
  3. WHO Treatment Guidelines for Drug-Resistant Tuberculosis, 2016 Update https://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf  (Geneva, 2016).
  4. Yeager, R. L., Munroe, W. G. & Dessau, F. I. Pyrazinamide (aldinamide) in the treatment of pulmonary tuberculosis. Am. Rev. Tuberc. 65, 523–546 (1952). [PMID: 14924175]
  5. Tarshis, M. S. & Weed, W. A. Jr. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am. Rev. Tuberc. 67, 391–395 (1953). [PMID: 13031058]
  6. Zhang, Y., Permar, S. & Sun, Z. Conditions that may affect the results of susceptibility testing of Mycobacterium tuberculosis to pyrazinamide. J. Med. Microbiol. 51, 42–49 (2002). [DOI: 10.1099/0022-1317-51-1-42]
  7. Salfinger, M. & Heifets, L. B. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob. Agents Chemother. 32, 1002–1004 (1988). [DOI: 10.1128/AAC.32.7.1002]
  8. Scorpio, A. & Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat. Med. 2, 662–667 (1996). [DOI: 10.1038/nm0696-662]
  9. Shi, W. et al. Introducing RpsA point mutations Δ438A and D123A into the chromosome of M. tuberculosis confirms their role in causing resistance to pyrazinamide. Antimicrob. Agents Chemother. 63, e02681-18 (2019).
  10. Shi, W., Chen, J., Zhang, S., Zhang, W. & Zhang, Y. Identification of novel mutations in Lprg (rv1411c), rv0521, rv3630, rv0010c, ppsc, and cyp128 associated with pyrazinoic acid/pyrazinamide resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 62 (2018).
  11. Gopal, P. et al. In vivo-selected pyrazinoic acid-resistant Mycobacterium tuberculosis strains harbor missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1. ACS Infect. Dis. 3, 492–501 (2017). [DOI: 10.1021/acsinfecdis.7b00017]
  12. Dillon, N. A., Peterson, N. D., Feaga, H. A., Keiler, K. C. & Baughn, A. D. Anti-tubercular activity of pyrazinamide is independent of trans-translation and RpsA. Sci. Rep. 7, 6135 (2017). [DOI: 10.1038/s41598-017-06415-5]
  13. Peterson, N. D., Rosen, B. C., Dillon, N. A. & Baughn, A. D. Uncoupling environmental ph and intrabacterial acidification from pyrazinamide susceptibility in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 59, 7320–7326 (2015). [DOI: 10.1128/AAC.00967-15]
  14. Dillon, N. A., Peterson, N. D., Rosen, B. C. & Baughn, A. D. Pantothenate and pantetheine antagonize the antitubercular activity of pyrazinamide. Antimicrob. Agents Chemother. 58, 7258–7263 (2014). [DOI: 10.1128/AAC.04028-14]
  15. Shi, W. et al. Pyrazinamide inhibits trans-translation in Mycobacterium tuberculosis. Science 333, 1630–1632 (2011). [DOI: 10.1126/science.1208813]
  16. Zhang, Y., Wade, M. M., Scorpio, A., Zhang, H. & Sun, Z. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 52, 790–795 (2003). [DOI: 10.1093/jac/dkg446]
  17. Boshoff, H. I., Mizrahi, V. & Barry, C. E. 3rd Effects of pyrazinamide on fatty acid synthesis by whole mycobacterial cells and purified fatty acid synthase I. J. Bacteriol. 184, 2167–2172 (2002). [DOI: 10.1128/JB.184.8.2167-2172.2002]
  18. Zimhony, O., Cox, J. S., Welch, J. T., Vilcheze, C. & Jacobs, W. R. Jr. Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis. Nat. Med. 6, 1043–1047 (2000). [DOI: 10.1038/79558]
  19. Shi, W. et al. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerg. Microbes Infect. 3, e58 (2014). [DOI: 10.1038/emi.2014.61]
  20. Zhang, S. et al. Mutations in panD encoding aspartate decarboxylase are associated with pyrazinamide resistance in Mycobacterium tuberculosis. Emerg. Microbes Infect. 2, e34 (2013). [DOI: 10.1038/emi.2013.38]
  21. Sambandamurthy, V. K. et al. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8, 1171–1174 (2002). [DOI: 10.1038/nm765]
  22. Gopal, P. et al. Pyrazinoic acid inhibits mycobacterial coenzyme A biosynthesis by binding to aspartate decarboxylase PanD. ACS Infect. Dis. 3, 807–819 (2017). [DOI: 10.1021/acsinfecdis.7b00079]
  23. Concepcion, J. et al. Label-free detection of biomolecular interactions using BioLayer interferometry for kinetic characterization. Comb. Chem. High. Throughput Screen 12, 791–800 (2009). [DOI: 10.2174/138620709789104915]
  24. Liebschner, D. et al. Polder maps: improving OMIT maps by excluding bulk solvent. Acta Crystallogr. D Struct. Biol. 73, 148–157 (2017). [DOI: 10.1107/S2059798316018210]
  25. Lee, B. I. & Suh, S. W. Crystal structure of the schiff base intermediate prior to decarboxylation in the catalytic cycle of aspartate alpha-decarboxylase. J. Mol. Biol. 340, 1–7 (2004). [DOI: 10.1016/j.jmb.2004.04.049]
  26. Friesner, R. A. et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 49, 6177–6196 (2006). [DOI: 10.1021/jm051256o]
  27. Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011). [DOI: 10.1021/ci200227u]
  28. Sharma, R., Florea, M., Nau, W. M. & Swaminathan, K. Validation of drug-like inhibitors against Mycobacterium tuberculosis L-aspartate alpha-decarboxylase using nuclear magnetic resonance (1H NMR). PLoS ONE 7, e45947 (2012). [DOI: 10.1371/journal.pone.0045947]
  29. Chopra, S., Pai, H. & Ranganathan, A. Expression, purification, and biochemical characterization of Mycobacterium tuberculosis aspartate decarboxylase, PanD. Protein Expr. Purif. 25, 533–540 (2002). [DOI: 10.1016/S1046-5928(02)00039-6]
  30. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006). [DOI: 10.1107/S0907444906019949]
  31. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007). [DOI: 10.1107/S0021889807021206]

Grants

  1. P01 AI095208/NIAID NIH HHS

MeSH Term

Amidohydrolases
Antitubercular Agents
Bacterial Proteins
Carboxy-Lyases
Crystallography, X-Ray
Drug Resistance, Bacterial
Hydrogen Bonding
Kinetics
Microbial Sensitivity Tests
Models, Molecular
Mutation
Mycobacterium tuberculosis
Pyrazinamide
Tuberculosis

Chemicals

Antitubercular Agents
Bacterial Proteins
Pyrazinamide
pyrazinoic acid
Amidohydrolases
pyrazinamide deamidase
Carboxy-Lyases
aspartate 4-decarboxylase

Word Cloud

Created with Highcharts 10.0.0activePOAsitetuberculosisconsistentPyrazinamideshowPanDinhibitormainstaymultidrugregimensusedtreatpersistentnon-replicatingmycobacteriaresponsibleprotractedtherapyrequiredcurepro-drugconvertedpyrazinoicacidpyrazinamidasehoweverexacttargetdrugdifficultdetermineenzymebindsmannercompetitiveinhibitiondirectlyaccessiblesuggestingproteinmustundergoconformationalchangebindslowbindingkineticsdeterminedDrug-resistantmutationsclusternearloopslaytopresistantmutantsreducedaffinityresidencetimemodelresistanceoccursdestabilizingclosedconformationmolecularbasispyrazinamideactivityMycobacterium

Similar Articles

Cited By