Antibiotic Degradation by Commensal Microbes Shields Pathogens.

Mergim Gjonbalaj, James W Keith, Mytrang H Do, Tobias M Hohl, Eric G Pamer, Simone Becattini
Author Information
  1. Mergim Gjonbalaj: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  2. James W Keith: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  3. Mytrang H Do: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  4. Tobias M Hohl: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  5. Eric G Pamer: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
  6. Simone Becattini: Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA becattis@mskcc.org.

Abstract

The complex bacterial populations that constitute the gut microbiota can harbor antibiotic resistance genes (ARGs), including those encoding β-lactamase enzymes (BLA), which degrade commonly prescribed antibiotics such as ampicillin. The prevalence of such genes in commensal bacteria has been increased in recent years by the wide use of antibiotics in human populations and in livestock. While transfer of ARGs between bacterial species has well-established dramatic public health implications, these genes can also function in within bacterial consortia, where antibiotic-resistant bacteria can provide antibiotic-sensitive neighbors with leaky protection from drugs, as shown both and , in models of lung and subcutaneous coinfection. However, whether the expression of ARGs by harmless commensal bacterial species can destroy antibiotics in the intestinal lumen and shield antibiotic-sensitive pathogens is unknown. To address this question, we colonized germfree or wild-type mice with a model intestinal commensal strain of that produces either functional or defective BLA. Mice were subsequently infected with or , followed by treatment with oral ampicillin. The production of functional BLA by commensal markedly reduced clearance of these pathogens and enhanced systemic dissemination during ampicillin treatment. Pathogen resistance was independent of ARG acquisition via horizontal gene transfer but instead relied on antibiotic degradation in the intestinal lumen by BLA. We conclude that commensal bacteria that have acquired ARGs can mediate shielding of pathogens from the bactericidal effects of antibiotics.

Keywords

References

  1. J Infect Dis. 1989 Aug;160(2):274-80 [PMID: 2788196]
  2. J Infect Dis. 2003 Nov 15;188(10):1605-9 [PMID: 14624388]
  3. ISME J. 2016 Mar;10(3):778-87 [PMID: 26505830]
  4. Antimicrob Agents Chemother. 2005 Dec;49(12):5190-1 [PMID: 16304203]
  5. mBio. 2015 Mar 24;6(2): [PMID: 25805733]
  6. Clin Microbiol Infect. 2004 Sep;10(9):777-84 [PMID: 15355407]
  7. BMC Infect Dis. 2009 Dec 14;9:202 [PMID: 20003454]
  8. Science. 2012 Aug 31;337(6098):1107-11 [PMID: 22936781]
  9. Antimicrob Agents Chemother. 1975 May;7(5):698-703 [PMID: 1041218]
  10. ISME J. 2007 May;1(1):56-66 [PMID: 18043614]
  11. Antimicrob Agents Chemother. 2004 Jan;48(1):75-9 [PMID: 14693521]
  12. Infect Immun. 2012 Jan;80(1):62-73 [PMID: 22006564]
  13. PLoS Biol. 2016 Dec 27;14(12):e2000631 [PMID: 28027306]
  14. Science. 2019 Feb 8;363(6427): [PMID: 30733391]
  15. Proc Biol Sci. 2005 Jan 7;272(1558):79-83 [PMID: 15875573]
  16. Antimicrob Agents Chemother. 2009 Jun;53(6):2455-62 [PMID: 19307374]
  17. Cell Host Microbe. 2017 May 10;21(5):592-602.e4 [PMID: 28494240]
  18. Nature. 2012 Jun 13;486(7402):207-14 [PMID: 22699609]
  19. Science. 2016 Apr 29;352(6285):535-8 [PMID: 27126035]
  20. Trends Mol Med. 2016 Jun;22(6):458-478 [PMID: 27178527]
  21. J Antimicrob Chemother. 1983 Dec;12(6):599-606 [PMID: 6363381]
  22. Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10135-40 [PMID: 19502423]
  23. Annu Rev Biochem. 2009;78:119-46 [PMID: 19231985]
  24. Antimicrob Agents Chemother. 2014 Aug;58(8):4535-42 [PMID: 24867962]
  25. Antimicrob Agents Chemother. 1993 Jul;37(7):1432-5 [PMID: 8363371]
  26. Nature. 2015 May 28;521(7553):516-9 [PMID: 25992546]
  27. Can J Microbiol. 1984 Jan;30(1):98-104 [PMID: 6143608]
  28. Front Microbiol. 2013 Jun 24;4:173 [PMID: 23805136]
  29. Nature. 2019 Jun;570(7762):462-467 [PMID: 31158845]
  30. J Exp Med. 2017 Jul 3;214(7):1973-1989 [PMID: 28588016]

Grants

  1. P30 CA008748/NCI NIH HHS
  2. R01 AI042135/NIAID NIH HHS
  3. U01 AI124275/NIAID NIH HHS

MeSH Term

Ampicillin
Animals
Anti-Bacterial Agents
Clostridioides difficile
Drug Resistance, Bacterial
Escherichia coli
Hydrolysis
Intestines
Listeria monocytogenes
Mice
Microbial Interactions
Microbial Viability
beta-Lactamases

Chemicals

Anti-Bacterial Agents
Ampicillin
beta-Lactamases

Word Cloud

Created with Highcharts 10.0.0cancommensalbacterialARGsBLAantibioticsantibioticresistancegenesampicillinbacteriaintestinalpathogenspopulationsgutmicrobiotatransferspeciesantibiotic-sensitivelumenfunctionaltreatmentcomplexconstituteharborincludingencodingβ-lactamaseenzymesdegradecommonlyprescribedprevalenceincreasedrecentyearswideusehumanlivestockwell-establisheddramaticpublichealthimplicationsalsofunctionwithinconsortiaantibiotic-resistantprovideneighborsleakyprotectiondrugsshownmodelslungsubcutaneouscoinfectionHoweverwhetherexpressionharmlessdestroyshieldunknownaddressquestioncolonizedgermfreewild-typemicemodelstrainproduceseitherdefectiveMicesubsequentlyinfectedfollowedoralproductionmarkedlyreducedclearanceenhancedsystemicdisseminationPathogenindependentARGacquisitionviahorizontalgeneinsteadrelieddegradationconcludeacquiredmediateshieldingbactericidaleffectsAntibioticDegradationCommensalMicrobesShieldsPathogensinfection

Similar Articles

Cited By