The role of mechanotransduction in heart failure pathobiology-a concise review.

Wolfgang Krueger, Nicole Bender, Martin Haeusler, Maciej Henneberg
Author Information
  1. Wolfgang Krueger: Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland. womafina@yahoo.com. ORCID
  2. Nicole Bender: Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
  3. Martin Haeusler: Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.
  4. Maciej Henneberg: Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland.

Abstract

This review evaluates the role of mechanotransduction (MT) in heart failure (HF) pathobiology. Cardiac functional and structural modifications are regulated by biomechanical forces. Exposing cardiomyocytes and the myocardial tissue to altered biomechanical stress precipitates changes in the end-diastolic wall stress (EDWS). Thereby various interconnected biomolecular pathways, essentially mediated and orchestrated by MT, are launched and jointly contribute to adapt and remodel the myocardium. This cardiac MT-mediated feedback decisively determines the primary cardiac cellular and tissue response, the sort (concentric or eccentric) of hypertrophy/remodeling, to mechanical and/or hemodynamic alterations. Moreover, the altered EDWS affects the diastolic myocardial properties independent of the systolic function, and elevated EDWS causes diastolic dysfunction. The close interconnection between MT pathways and the cell nucleus, the genetic endowment, principally allows for the wide variety of phenotypic appearances. However, demographic, environmental features, comorbidities, and also the genetic make-up may modulate the phenotypic result. Cardiac MT takes a fundamental and superordinate position in the myocardial adaptation and remodeling processes in all HF categories and phenotypes. Therefore, the effects of MT should be integrated in all our scientific, clinical, and therapeutic considerations.

Keywords

References

  1. Savarese GI, Lund LH (2017) Global public health burden of heart failure. Cardiac Failure Review 3:7–11 [PMID: 28785469]
  2. Mensah GA, Wei GS, Sorlie PD et al (2017) Decline in cardiovascular mortality: possible causes and implications. Circ Res 120:366–380 [PMID: 28104770]
  3. Conrad N, Judge A, Tran J, Mohseni H, Hedgecott D, Crespillo AP, Allison M, Hemingway H, Cleland JG, McMurray J, Rahimi K (2018) Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391:572–580 [PMID: 29174292]
  4. Damman K, Tang WH, Felker GM, Lassus J, Zannad F, Krum H, McMurray J (2014) Current evidence on treatment of patients with chronic systolic heart failure and renal insufficiency: practical considerations from published data. J Am Coll Cardiol 63:853–871 [PMID: 24334210]
  5. Konstam MA, Abboud FM (2017) Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure). Circulation 135:717–719 [PMID: 28223323]
  6. Najjar SS (2009) Heart failure with preserved ejection fraction: failure to preserve, failure of reserve, and failure on the compliance curve. J Am Coll Cardiol 54:419–421 [PMID: 19628116]
  7. Reichek N, Wilson J, St. John M et al (1982) Noninvasive determination of left ventricular end-systolic stress: validation of the method and initial application. Circulation 65:99–108 [PMID: 7053293]
  8. Ponikowsky P, Voors AA, Anker SD et al (2016) 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 37:2129–2200
  9. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride P, McMurray J, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL (2013) ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 128:1810–1852 [PMID: 23741057]
  10. Sanders-van Wijk S, van Empel V, Davarzani N, Maeder MT, Handschin R, Pfisterer ME, Brunner-la Rocca HP, TIME-CHF investigators (2015) Circulating biomarkers of distinct pathophysiological pathways in heart failure with preserved vs reduced left vebtricular ejection fraction. Eur J Heart Fail 17:1006–1014 [PMID: 26472682]
  11. Tromp J, Westenbrink BD, Ouwerkerk W, van Veldhuisen D, Samani NJ, Ponikowski P, Metra M, Anker SD, Cleland JG, Dickstein K, Filippatos G, van der Harst P, Lang CC, Ng LL, Zannad F, Zwinderman AH, Hillege HL, van der Meer P, Voors AA (2018) Identifying pathophysiological mechanisms in heart failure with reduced versus preserved ejection fraction. J Am Coll Cardiol 72:1081–1090 [PMID: 30165978]
  12. Zile MR, Baicu CF (2013) Biomarkers of diastolic dysfunction and myocardial fibrosis: application to heart failure with a preserved ejection fraction. J Cardiovasc Transl Res 6:501–515 [PMID: 23716130]
  13. Borlaug BA, Redfield MM (2011) Diastolic and systolic heart failure are distinct phenotypes of the heart failure syndrome. Circulation 123:2006–2014 [PMID: 21555723]
  14. Paulus WJ, Tschöpe C (2013) A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol 62:263–271 [PMID: 23684677]
  15. Borlaug BA (2014) The pathophysiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 11:507–515 [PMID: 24958077]
  16. Van Heerebeek L, Borbély A, Niessen HW et al (2006) Myocxardial structure and function differ in systolic and diastolic heart failure. Circulation 113:1966–1973 [PMID: 16618817]
  17. Rodrigues PG, Leite-Moreira AF, Falcão-Pires I (2016) Myocardial reverse remodeling: how far can we rewind Am J Physiol heart Circ Physiol 310: H 1402 - H 1422
  18. Van Linthout S, Tschoepe C (2017) Inflammation—cause or consequence of heart failure or both? Curr Heart Fail Rep 14:251–265 [PMID: 28667492]
  19. Triposkiadis F, Butler J, Abboud FM, Armstrong PW, Adamopoulos S, Atherton JJ, Backs J, Bauersachs J, Burkhoff D, Bonow RO, Chopra VK, de Boer RA, de Windt L, Hamdani N, Hasenfuss G, Heymans S, Hulot JS, Konstam M, Lee RT, Linke WA, Lunde IG, Lyon AR, Maack C, Mann DL, Mebazaa A, Mentz RJ, Nihoyannopoulos P, Papp Z, Parissis J, Pedrazzini T, Rosano G, Rouleau J, Seferovic PM, Shah AM, Starling RC, Tocchetti CG, Trochu JN, Thum T, Zannad F, Brutsaert DL, Segers VF, de Keulenaer GW (2019) The continous heart failure spectrum: moving beyond an ejection fraction classification. Eur Heart J 40:2155–2163 [PMID: 30957868]
  20. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuss L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003 [PMID: 20733099]
  21. Swynghedaue B (2016) Evolutionary paradigms in cardiology: the case of chronic heart failure. In: Alvergne S, Jenkins C, Fauri C (eds) Evolutionary thinking in medicine. Advances in the Evolutionary Analysis of Human Behaviour. Springer Intern Publishing, Switzerland, pp 137–153
  22. Ingber DE (2003) Mechanobiology and diseases of machanotransduction. Ann Med 35:1–14
  23. Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20 [PMID: 16399074]
  24. Ingber DE (1997) The architectural basis of cellular mechanotransduction. Annu Rev Physiol 59:575–599 [PMID: 9074778]
  25. Voorhees AP, Han H-C (2016) Biomechanics of cardiac function. Compr Physiol 5:1623–1644
  26. Herum KM, Lunde IG, McCulloch AD, Christensen G (2017) The soft- and hard-heartedness of cardiac fibroblasts: Mechanotransduction signaling pathways in fibrosis of the heart. J Clin Med 6:53 [>PMCID: ]
  27. Knöll R, Hoshijima M, Chien K (2003) Cardiac mechanotransduction and implications for heart disease. J Mol Med 81:750–756 [PMID: 14551702]
  28. Maksuti E, Westerhof BE, Ugander M, Donker DW, Carlsson M, Broomé M (2019) Cardiac remodeling in aortic and mitral valve disease - a simulation study with clinical validation. J Appl Physiol 126:1377–1389 [PMID: 30730809]
  29. Kim KH, Kim HM, Park JS, Kim YJ (2019) Differential Transcriptome profile and exercise capacity in cardiac remodeling by pressure overload versus volume overload. J Cardiovasc Imaging 27:50–63 [PMID: 30701717]
  30. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64 [PMID: 124746]
  31. Gerdes AM, Campbell SE, Hilbelink DR (1988) Structural remodelling of cardiac myocytes in rats with arteriovenous fistula. Lab Investig 59:857–861 [PMID: 2974102]
  32. Mann DL, Bogaev R, Buckberg GD (2010) Cardiac remodelling and myocardial recovery: lost in translation? Eur J Heart Fail 12:789–796 [PMID: 20675667]
  33. Hill JA, Olson EN (2008) Cardiac plasticity. N Engl J Med 358:1370–1380 [PMID: 18367740]
  34. Vega ER, Konhilas JP, Kelly DP, Leinwand LA (2017) Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metabol 25:1012–1026
  35. Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, Malec KB, McKeown P, Schocken DD (1992) Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation 86:426–430 [PMID: 1638711]
  36. Gori M, Iacovoni A, Senni M (2016) Hemodynamics of heart failure with preserved ejection fraction: a clinical perspective. Cardiac Fail Rev 2:102–105
  37. Kvakan H, Kleinewietfeld M, Qadri F, Park JK, Fischer R, Schwarz I, Rahn HP, Plehm R, Wellner M, Elitok S, Gratze P, Dechend R, Luft FC, Muller DN (2009) Regulatory T cells ameliorate angiotensin II–induced cardiac damage. Circulation 119:2904–2912 [PMID: 19470887]
  38. Anaversa P, Ricci R, Olivetti G (1986) Quantitative structural analysis of the myocardium during physiological growth and induced cardiac hypertrophy: a review. J Am Coll Cardiol 7:1140–1149
  39. Tavi P, Laine M, Weckström M, Ruskoaho H (2001) Cardiac mechanotransduction: from sensing to disease and treatment. Trend Phram Sci 55:254–260
  40. Grossman W, Paulus WJ (2013) Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling. J Clin Invest 123:3701–3703 [PMID: 23999445]
  41. Ganau A, Devereux RB, Roman MJ, de Simone G, Pickering TG, Saba PS, Vargiu P, Simongini I, Laragh JH (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19:1550–1558 [PMID: 1534335]
  42. Nadruz W (2015) Myocardial remodeling in hypertension. J Hum Hypertens 29:1–6 [PMID: 24804791]
  43. Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure: abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959 [PMID: 15128895]
  44. Chien KR (1999) Stress pathways and heart failure. Cell 98:555–558 [PMID: 10490095]
  45. Omens JH, McCulloch AD, Lorenzen-Schmidt I (2007) Mechanotransduction in cardiac remodeling and heart failure. In: Weckström M, Tavi P cardiac mehanotransduction. Springer Science and Business Media, New York, chapter 5:78–92
  46. Hunter JJ, Chien KR (1999) Signaling pathways for cardiac hypertrophy and failure. N Engl J Med 341:1276–1283 [PMID: 10528039]
  47. Iwanaga Y, Nishi I, Furuichi S, Noguchi T, Sase K, Kihara Y, Goto Y, Nonogi H (2006) B-type natriuretic peptide strongly reflects diastolic wall stress in patients with chronic heart failure: comparison between systolic and diastolic heart failure. J Am Coll Cardiol 47:742–748 [PMID: 16487838]
  48. Bansal M, Marwick TH (2008) Natriuretic peptides and filling pressure at rest and stress. Heart Fail Clin 4:71–86 [PMID: 18313626]
  49. Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressurevolume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289: H 501 - H 512
  50. Fukuta H, Little WC (2008) The cardiac cycle and the pathophysiological basis of left ventricular contraction, ejection, relaxation, and filling. Heart Fail Clin 4:1–11 [PMID: 18313620]
  51. Kerkhof PLM (2015) Characterizing heart failure in the ventricular volume domain. Clin Med Insights Cardiol 9(Suppl 1):11–31 [PMID: 25780344]
  52. Mihl C, Dassen WRM, Kuipers H (2008) Cardiac remodeling versus eccentric hypertrophy in strength and endurance athletes. Neth Heart J 16:129–133 [PMID: 18427637]
  53. Beisvag V, Kemi OJ, Arbo I (2009) Pathological and physiological hypertrophies are regulated by distinct gene programs. Eur J Cardiovasc Prev Rehabil 16:690–697 [PMID: 19809332]
  54. Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A (2016) Cardiac hypertrophy: an introduction to molecular and cellular basis. Med Sci Monit Basic Res 22:75–79 [PMID: 27450399]
  55. Swynghedauw B (1999) Molecular mechnaisms of myocardial remodeling. Physiol Rev 79:215–262 [PMID: 9922372]
  56. Chien KR, Zhu H, Knowlton KU, Miller-Hance W, van-Bilsen M, O'Brien TX, Evans SM (1993) Transcriptional regulation during cardiac growth and development. Annu Rev Physiol 55:77–95 [PMID: 8466192]
  57. Taegtmeyer H, Sen S, Vela D (2010) Return to the fetal gene program. Ann N Y Acad Sci 1188:191–198 [PMID: 20201903]
  58. Mann DL (2014) The evolution of modern theory and therapy for heart failure. Prog Pediatr Cardiol 37:9–12
  59. Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849 [PMID: 15927992]
  60. Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 14:30–38 [PMID: 27708278]
  61. Wachtell K, Smith G, Gerdts E, Dahlöf B, Nieminen MS, Papademetriou V, Bella JN, Ibsen H, Rokkedal J, Devereux RB (2000) Left ventricular filling patterns in patients with systemic hypertension and left ventricular hypertrophy (the LIFE study). Losartan intervention for endpoint. Am J Cardiol 85:466–472 [PMID: 10728952]
  62. Verdecchia P, Carini G, Circo A, Dovellini E, Giovannini E, Lombardo M, Solinas P, Gorini M, Maggioni AP, MAVI (MAssa Ventricolare sinistra nell'Ipertensione) Study Group (2001) Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol 38:1829–1835 [PMID: 11738281]
  63. Koren MJ, Devereux RB, Casale PN, Savage DD, Laragh JH (1991) Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann Intern Med 114:345–352 [PMID: 1825164]
  64. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566 [PMID: 2139921]
  65. Borbely A, Falcao-Pires I, van Heerebeek L et al (2009) Hypophosphorylation of the stiff N2B titin isoform raises cardiomyocyte resting tension in failing human myocardium. Circ Res 104:780–786 [PMID: 19179657]
  66. Roe AT, Aronsen JM, Skårdal K et al (2017) Increased passive stiffness promotes diastolic dysfunction despite improved Ca21 handling during left ventricular concentric hypertrophy. Cardiovasc Res 113:1161–1172 [PMID: 28472418]
  67. Velagalet RS, Gona P, Pencina MJ et al (2014) Left ventricular hypertrophy patterns and incidence of heart failure with preserved versus reduced ejection fraction. Am J Cardiol 113:117–122
  68. Lovic D, Manolis AJ, Lovic B et al (2014) The pathophysiological basis of carotid baroreceptor stimulation for the treatment of resistant hypertension. Curr Vasc Pharmacol 12:16–27 [PMID: 23905596]
  69. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100:999–1008 [PMID: 10468532]
  70. Bisping E, Wakula P, Poteser M, Heinzel FR (2014) Targeting cardiac hypertrophy: toward a causal heart failure therapy. J Cardiovasc Pharmacol 64:293–301 [PMID: 25286359]
  71. Hirota H, Chen J, Betz UA, Rajewsky K, Gu Y, Ross J Jr, Müller W, Chien KR (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97:189–198 [PMID: 10219240]
  72. Michels da Silva D, Langer H, Graf T (2019) Inflammatory and molecular pathways in heart failure-ischemia. HFpEF and Transthyretin Cardiac Amyloidosis Int J Mol Sci 20(E):2322
  73. Travers JG (2016) The cardiac fibrosis. Circ Res 118:1021–1040 [PMID: 26987915]
  74. Lourenco AP, Leite-Moreira AF, Balligand JL et al (2018) An integrative translational approach to study heart failure with preserved ecejtion fraction: a position paper from the working group on myocardial function of the European Society of Cardiology. Eur J Heart Fail 20:216–227 [PMID: 29148148]
  75. Lammerding J, Kamm RD, Lee RT (2004) Mechanotransduction in cardiac myocytes. Ann N Y Acad Sci 1015:53–70 [PMID: 15201149]
  76. Opie L (2004) Heart physiology. Lippincott, Williams & Wilkins, Philadelphia
  77. Borlaug BA, Nishimura RA, Sorajja P, Lam CS, Redfield MM (2010) Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail 3:588–595 [PMID: 20543134]
  78. Chatterjee NA, Fifer MA (2011) Heart failure. In: Lilly LS (ed) Pathophysiology of heart failure: a collaborative project of medical students and faculty. Lippincott Williams & Wilkins, Philadelphia , chapter 9, pp 216–243
  79. Gaasch WH, Bing OH, Mirsky I (1982) Chamber compliance and myocardial stiffness in left ventricular hypertrophy. Eur Heart J 3 (Suppl A): 139–145
  80. Alderman EL, Glantz SA (1976) Acute hemodynamic interventions shift the diastolic pressure-volume curve in man. Circulation 54:662–671 [PMID: 786501]
  81. Gaasch WH, Zile MR (2004) Left ventricular diastolic dysfunction and diastolic heart failure. Annu Rev Med 54:373–394
  82. Brutsaert DL, Sys SU, Gillebert TC (1993) Diastolic failure: pathophysiology and therapeutic implications. J Am Coll Cardiol 22:318–325 [PMID: 8509558]
  83. Grossman W (2000) Defining diastolic dysfunction. Circulation 101:2020–2021 [PMID: 10790339]
  84. Vachiery JL, Adir Y, Barberà JA et al (2013) Pulmonary hypertension due to left heart diseases. J am Coll Cardiol 62(Suppl D):D 100–D 108
  85. Little WC (2005) Diastolic dysfunction beyond distensibility: adverse effects of ventricular dilatation. Circulation 112:2888–2890 [PMID: 16275877]
  86. Tokola H, Hautala N, Marttila M, Magga J, Pikkarainen S, Kerkelä R, Vuolteenaho O, Ruskoaho H (2001) Mechanical load-induced alterations in B-type natriuretic peptide gene expression. Can J Physiol Pharmacol 79:646–653 [PMID: 11558673]
  87. Vanderheyden M, Bartunek J, Goethals M (2004) Brain and other natriuretic peptides: molecular aspects. Eur J Heart Fail 6:261–268 [PMID: 14987574]
  88. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, Slater R, Palmer BM, van Buren P, Meyer M, Redfield MM, Bull DA, Granzier HL, LeWinter M (2015) Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation 131:1247–1259 [PMID: 25637629]
  89. Adir Y, Guazzi M, Offer A, Temporelli PL, Cannito A, Ghio S (2017) Pulmonary hemodynamics in heart failure with reduced or preserved ejection fraction and pulmonary hypertension: similarities and disparities. Am Heart J 192:120–127 [PMID: 28938958]
  90. Brucks S, Little WC, Chao T, Kitzman DW, Wesley-Farrington D, Gandhi S, Shihabi ZK (2005) Contribution of left ventricular diastolic dysfunction to heart failure regardless of ejection fraction. Am J Cardiol 95:603–606 [PMID: 15721099]
  91. Iwano H, Little WC (2013) Heart failure: what does ejection fraction have to do with it? J Cardiol 62:1–3 [PMID: 23672790]
  92. Galie N, Humbert M, Vachiery JL et al (2016) The joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS). Eur Heart J 37:67–119 [PMID: 26320113]
  93. Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II: pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117:1717–1731 [PMID: 18378625]
  94. Borlaug BA, Reddy YNV (2019) The role of the pericardium in heart failure. JACC: Heart Fail 7:574–585
  95. Konstam MA, Kiernan MS, Bernstein D, Bozkurt B, Jacob M, Kapur NK, Kociol RD, Lewis EF, Mehra MR, Pagani FD, Raval AN, Ward C, American Heart Association Council on Clinical Cardiology; Council on Cardiovascular Disease in the Young; and Council on Cardiovascular Surgery and Anesthesia (2018) Evaluation and Management of Right-Sided Heart Failure. Circulation 137:e578–e622 [PMID: 29650544]
  96. Voelkel NF, Natarajan R, Drake JI, Boogard HJ (2011) Right ventricle in pulmonary hypertension. Comp Physiol 1:525–540
  97. Vonk Noordegraaf A, Chin KM, Haddad F et al (2019) Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur Respir J 53: pii: 1801900
  98. Samson N, Pauli R (2017) Epigenetics, inflammation and metabolism in right heart failure associated with pulmonary hypertension. Pulmonary Circulation 7:572–587 [PMID: 28628000]
  99. Borgdorff MAJ, Dickinson MG, Berger RMF, Bartelds B (2015) Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement? Heart Fail Rev 20:475–491 [PMID: 25771982]
  100. Naeije R, Brimioulle S, Dewachter L (2014) Biomechanics of the right ventricle in health and disease (2013 Grover conference series). Pulmonary Circ 4:395–406
  101. Borgdorff MA, Bartelds B, Dickinson MG et al (2013) Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol heart Circ Physiol 305:H 354–H 364
  102. Cingolani HE, Pérez NG, Cingolani OH, Ennis IL (2013) The Anrep effect: 100 years later. Am J Physiol heart Circ Physiol 304:H 175–H 182
  103. Szabó G, Soós P, Bährle S, Radovits T, Weigang E, Kékesi V, Merkely B, Hagl S (2006) Adaptation of the right ventricle to an increased afterload in the chronically volume overloaded heart. Ann Thorac Surg 82:989–995 [PMID: 16928521]
  104. Danton MH, Greil GF, Byrne JG et al (2003) Right ventricular volume measurement by conductance catheter. Am J Physiol Heart Circ Physiol 285:H 1774–H 1785
  105. Belenkie I, Smith ER, Tyberg JV (2001) Ventricular interaction: from bench to bedside. Ann Med 33:236–241 [PMID: 11405544]
  106. Jardin F, Dubourg O, Guéret P, Delorme G, Bourdarias J-P (2001) Quantitative two-dimensional echocardiography in massive pulmonary embolism: emphasis on ventricular interdependence and leftward septal displacement. J Am Coll Cardiol 10:1201–1206
  107. Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128:2016–2025 [PMID: 24056688]
  108. de Man FS, Handoko ML, van Ballegoij JJ, Schalij I, Bogaards SJ, Postmus PE, van der Velden J, Westerhof N, Paulus WJ, Vonk-Noordegraaf A (2012) Bisoprolol delays progression towards right heart failure in experimental pulmonary hypertension. Circ: Heart Fail 5:97–105
  109. Bartelds B, Borgdorff MA, Smit-van Oosten A, Takens J, Boersma B, Nederhoff MG, Elzenga NJ, van Gilst W, de Windt LJ, Berger RM (2011) Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail 13:1275–1282 [PMID: 22024026]
  110. Borgdorff MAJ, Bartelds B, Dickinson MG et al (2012) Sildenafil enhances systolic adaptation, but does not prevent diastolic dysfunction, in the pressure-loaded right ventricle. Eur J Heart Fail 14:1067–1074 [PMID: 22730335]
  111. Bossers GPL, Hagdorn QAJ, Ploegstra MJ et al (2018) Volume load-induced right ventricular dysfunction in animal models: insights in a translational gap in congenital heart disease. Eur J Heart Fail 20:80–812
  112. Reddy S, Zhao M, Hu DQ et al (2013) Physiologic and molecular characterization of a murine model of right ventricular volume overload. Am J Physiol heart Circ Physiol 304:H 1313–H 1327
  113. Davlouros PA, Niwa K, Webb GD, Gatzoulis MA (2006) The right ventricle in congenital heart disease. Heart 92 (Suppl I): i27–i38
  114. Messika-Zeitoun D, Thomson H, Bellamy M, Scott C, Tribouilloy C, Dearani J, Tajik AJ, Schaff H, Enriquez-Sarano M (2004) Medical and surgical outcome of tricuspid regurgitation caused by flail leaflets. J Thorac Cardiovasc Surg 128:296–302 [PMID: 15282468]
  115. Apitz C, Webb GD, Redington AN (2009) Tetralogy of Fallot. Lancet 374:1462–1471 [PMID: 19683809]
  116. Reddy S, Bernstein D (2008) Molecular aspects of RV adaptation to stress. In: Friedberg MK, Redington AN (eds) RV physiology, adaptation and failure in congenital andaquired heart disease. Springer Nature, Cham, Switzerland, chapter 3, p 35
  117. Melaku LS, Desalegn T (2019) Molecular mediators, characterization of signaling pathways with description of cellular distinctions in pathophysiology of cardiac hypertrophy and molecular changes underlying a transition to heart failure. Int J Health Allied Sci 8:1–24
  118. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12:1681–1692 [PMID: 8385610]
  119. Franssen C, Chen S, Unger A et al (2016) Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. J Am Coll Cardiol: Heart Fail 4:312–324
  120. Hamdani N, Franssen C, Lourenço A et al (2013) Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail 6:1239–1249 [PMID: 24014826]
  121. Lyon RC, Zanella F, Omens JH, Sheikh F (2015) Mechanotransduction in cardiac hypertrophy and failure. Circ Res 116:1462–1476 [PMID: 25858069]
  122. Sadoshima J, Izumo S (1997) The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol 59:551–571 [PMID: 9074777]
  123. Pikkarainen S, Tokola H, Ruskoaho H (2007) Mechanotransduction of the endocrine heart: paracrine and intracellular regulation of B-type natriuretic peptide synthesis. In: Weckström M, Tavi P (eds) Cardiac Mechanotransduction, Landes bioscience and springer science and business, New York, NY, chapter, vol 9, pp 134–144
  124. Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-κB–dependent mechanism. J Clin Invest 104:1603–1612 [PMID: 10587524]
  125. De Keulenaer GW, Brutsaert DL (2011) Systolic and diastolic heart ailure are overlapping phenotypes within the heart failure spectrum. Circulation 123:1996–2004 [PMID: 21555722]
  126. Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, Paulus WJ (2016) Phenotype- specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation 134:73–90 [PMID: 27358439]
  127. Gondalia RB, Rothermel BA, Lavandero S, Gillette TG, Hill JA (2012) Cardiac plasticity in health and disease. In: Patterson C, Willis MS (eds) Translational cardiology. Humana Press, Totowa, NJ, Springer Science and Business Media, pp 185–250
  128. Mannacio V, Antignano A, De Amicis V et al (2013) B-type natriuretic peptide as a biochemical marker of left ventricular diastolic function: assessment in asymptomatic patients 1 year after valve replacement for aortic stenosis. Interact Cardiovasc Thorac Surg 17:371–377 [PMID: 23656924]
  129. Watanabe S, Shite J, Takaoka H, Shinke T, Imuro Y, Ozawa T, Otake H, Matsumoto D, Ogasawara D, Paredes OL, Yokoyama M (2006) Myocardial stiffness is an important determinant of the plasma brain natriuretic peptide concentration in patients with both diastolic and systolic heart failure. Eur Heart J 27:832–838 [PMID: 16464912]
  130. Yang F, Dong A, Mueller P et al (2012) Coronary artery remodeling in a model of left ventricular pressure overload is influenced by platelets and inflammatory cells. PLoS One 7:e40196 [PMID: 22916095]
  131. Smeets PJH, Teunissen BE, Planavila A et al (2008) Inflammatory pathways are activated during Cardiomyocyte hypertrophy and attenuated by peroxisome proliferator-activated receptors PPARα and PPARδ. J Biol Chem 283:29109–21118 [PMID: 18701451]
  132. Lam CSP, Lund LH (2016) Microvascular endothelial dysfunction in heart failure with preserved ejection fraction. Heart 102:255–256
  133. Ferrari R (2016) Heart failure: an historical perspective, Europ Heart J Supplements. 18(Suppl G):G 3–G 10
  134. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J (2009) The sympathetic nervous system in heart failure: physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 54:1747–1762 [PMID: 19874988]
  135. Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54:375–385 [PMID: 19628111]
  136. Van Heerebeek L, Paulus WJ (2016) Understanding heart failure with preserved ejection fraction: where are we today? Neth Heart J 24:227–236 [PMID: 26909795]
  137. Kao DP, Lewsey JD, Anand IS, Massie BM, Zile MR, Carson PE, McKelvie R, Komajda M, McMurray J, Lindenfeld J (2015) Characterization of subgroups of heart failure patients with preserved ejection fraction with possible implications for prognosis and treatment response. Eur J Heart Fail 17:925–935 [PMID: 26250359]
  138. Khan MS, Fonarow GC, Khan H, Greene SJ, Anker SD, Gheorghiade M, Butler J (2017) Renin-angiotensin blockade in heart failure with preserved ejection fraction: a systematic review and meta-analysis. ESC Heart Fail 4:402–408 [PMID: 28869332]

MeSH Term

Diastole
Heart Failure
Humans
Mechanotransduction, Cellular
Myocardium
Systole
Ventricular Function, Left

Word Cloud

Created with Highcharts 10.0.0MTfailuremyocardialstressEDWSreviewrolemechanotransductionheartHFpathobiologyCardiacbiomechanicaltissuealteredwallpathwayscardiacdiastolicdysfunctiongeneticphenotypicevaluatesfunctionalstructuralmodificationsregulatedforcesExposingcardiomyocytesprecipitateschangesend-diastolicTherebyvariousinterconnectedbiomolecularessentiallymediatedorchestratedlaunchedjointlycontributeadaptremodelmyocardiumMT-mediatedfeedbackdecisivelydeterminesprimarycellularresponsesortconcentriceccentrichypertrophy/remodelingmechanicaland/orhemodynamicalterationsMoreoveraffectspropertiesindependentsystolicfunctionelevatedcausescloseinterconnectioncellnucleusendowmentprincipallyallowswidevarietyappearancesHoweverdemographicenvironmentalfeaturescomorbiditiesalsomake-upmaymodulateresulttakesfundamentalsuperordinatepositionadaptationremodelingprocessescategoriesphenotypesThereforeeffectsintegratedscientificclinicaltherapeuticconsiderationspathobiology-aconciseDiastolicEnd-diastolicEvolutionFillingpressureHeartInflammationMechanotransductionNeuroendocrinesystems

Similar Articles

Cited By (4)