Establishment of a microsatellite set for noninvasive paternity testing in free-ranging in Mount Taihangshan area, Jiyuan, China.

Bai-Shi Wang, Zhen-Long Wang, Jun-Dong Tian, Zhen-Wei Cui, Ji-Qi Lu
Author Information
  1. Bai-Shi Wang: Institute of Biodiversity and Ecology, Zhengzhou University, Kexue Dadao 100, Zhengzhou 450001, PR China.
  2. Zhen-Long Wang: Institute of Biodiversity and Ecology, Zhengzhou University, Kexue Dadao 100, Zhengzhou 450001, PR China.
  3. Jun-Dong Tian: Institute of Biodiversity and Ecology, Zhengzhou University, Kexue Dadao 100, Zhengzhou 450001, PR China.
  4. Zhen-Wei Cui: Institute of Biodiversity and Ecology, Zhengzhou University, Kexue Dadao 100, Zhengzhou 450001, PR China.
  5. Ji-Qi Lu: Institute of Biodiversity and Ecology, Zhengzhou University, Kexue Dadao 100, Zhengzhou 450001, PR China.

Abstract

BACKGROUND: Within multi-male and multi-female mammalian societies, paternity assignment is crucial for evaluating male reproductive success, dominance hierarchy, and inbreeding avoidance. It is, however, difficult to determine paternity because of female promiscuity during reproduction. Noninvasive molecular techniques (e.g., fecal DNA) make it possible to match the genetic father to his offspring. In the current study, a troop of free-ranging Taihangshan macaques () in Mt. Taihangshan area, Jiyuan, China, was selected for studying the paternity. We successfully screened a set of microsatellite loci from fecal DNA and evaluated the efficiency of these loci for paternity testing using clearly recorded data of maternity.
RESULTS: The results showed that: 1) ten loci out of 18 candidate microsatellite loci were amplified successfully in the fecal samples of Taihangshan macaques. The error probability in maternity assignments and paternity testing was very low as indicated by their power of discrimination (0.70 to 0.95), power of exclusion (0.43 to 0.84), and the values of polymorphic information content ranging from 0.52 to 0.82; 2) the combined probability of exclusion in paternity testing for ten qualified loci was as high as 99.999%, and the combined probability of exclusion reached 99.99% when the seven most polymorphic loci were adopted; 3) the offspring were assigned to their biological mother correctly and also matched with their genetic father.
CONCLUSIONS: We concluded that the ten polymorphic microsatellite loci, especially a core set of seven most polymorphic loci, provided an effective and reliable tool for noninvasive paternity testing in free-ranging rhesus macaques.

Keywords

References

  1. Genetika. 2013 Jul;49(7):838-45 [PMID: 24450153]
  2. Trends Ecol Evol. 1997 Jun;12(6):223-7 [PMID: 21238046]
  3. Am J Primatol. 2005 Nov;67(3):377-83 [PMID: 16287107]
  4. Am J Primatol. 2008 Feb;70(2):136-47 [PMID: 17724672]
  5. Mol Ecol. 1997 Aug;6(8):793-5 [PMID: 9262015]
  6. Immunogenetics. 2005 May;57(3-4):198-209 [PMID: 15900491]
  7. Anim Genet. 2004 Jun;35(3):220-6 [PMID: 15147394]
  8. Nucleic Acids Res. 1996 Aug 15;24(16):3189-94 [PMID: 8774899]
  9. Nature. 2003 Sep 11;425(6954):179-81 [PMID: 12968180]
  10. Mol Ecol. 1996 Feb;5(1):157-9 [PMID: 9147691]
  11. Biol Rev Camb Philos Soc. 2007 May;82(2):319-34 [PMID: 17437563]
  12. Mol Ecol. 2012 Feb;21(3):715-31 [PMID: 21988698]
  13. Mol Ecol. 2001 Jul;10(7):1835-44 [PMID: 11472550]
  14. Am J Primatol. 2013 Jun;75(6):605-12 [PMID: 23526654]
  15. Proc Biol Sci. 1999 Apr 7;266(1420):657-63 [PMID: 10331287]
  16. Mol Ecol. 2013 Jul;22(13):3638-51 [PMID: 23682587]
  17. Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):12890-5 [PMID: 11606765]
  18. Yi Chuan. 2009 Mar;31(3):285-9 [PMID: 19273442]
  19. Mol Ecol. 2001 May;10(5):1279-300 [PMID: 11380884]
  20. Forensic Sci Int Genet. 2013 May;7(3):389-91 [PMID: 23333809]
  21. BMC Genet. 2010 Nov 10;11:101 [PMID: 21062500]
  22. Trends Ecol Evol. 1999 Aug;14(8):323-327 [PMID: 10407432]
  23. Am J Primatol. 2002 Apr;56(4):237-43 [PMID: 11948640]
  24. Proc Biol Sci. 2007 Sep 7;274(1622):2179-85 [PMID: 17609183]
  25. Electrophoresis. 1995 Sep;16(9):1607-11 [PMID: 8582342]
  26. Am J Primatol. 2001 Nov;55(3):151-8 [PMID: 11746278]
  27. PLoS One. 2010 Mar 08;5(3):e9581 [PMID: 20221392]
  28. Integr Zool. 2014 Nov;9(5):598-612 [PMID: 24382257]
  29. Am J Primatol. 2006 Jan;68(1):73-95 [PMID: 16419121]
  30. Integr Zool. 2013 Dec;8(4):410-6 [PMID: 24344965]
  31. Am J Primatol. 1997;43(4):357-60 [PMID: 9403100]
  32. Am J Primatol. 2004 Sep;64(1):19-27 [PMID: 15356855]
  33. Am J Primatol. 2000 Jan;50(1):1-7 [PMID: 10588431]
  34. Scand J Psychol. 2003 Jul;44(3):265-71 [PMID: 12914590]
  35. Proc Biol Sci. 1999 Jun 7;266(1424):1189-95 [PMID: 10406131]
  36. Mol Ecol. 2002 Feb;11(2):155-65 [PMID: 11856418]
  37. Mol Ecol. 1998 May;7(5):639-55 [PMID: 9633105]
  38. Am J Hum Genet. 1991 Oct;49(4):746-56 [PMID: 1897522]

Word Cloud

Created with Highcharts 10.0.0locipaternitytesting0TaihangshanmicrosatellitepolymorphicfecalDNAfree-rangingmacaquessettenprobabilityexclusionNoninvasivegeneticfatheroffspringareaJiyuanChinasuccessfullymaternitypowercombined99sevennoninvasiveBACKGROUND:Withinmulti-malemulti-femalemammaliansocietiesassignmentcrucialevaluatingmalereproductivesuccessdominancehierarchyinbreedingavoidancehoweverdifficultdeterminefemalepromiscuityreproductionmoleculartechniquesegmakepossiblematchcurrentstudytroopMtselectedstudyingscreenedevaluatedefficiencyusingclearlyrecordeddataRESULTS:resultsshowedthat:118candidateamplifiedsampleserrorassignmentslowindicateddiscrimination70954384valuesinformationcontentranging52822qualifiedhigh999%reached99%adopted3assignedbiologicalmothercorrectlyalsomatchedCONCLUSIONS:concludedespeciallycoreprovidedeffectivereliabletoolrhesusEstablishmentMountFecalMaternityMicrosatellitePaternityRhesusmacaque

Similar Articles

Cited By (1)