Transcriptome of pleuropodia from locust embryos supports that these organs produce enzymes enabling the larva to hatch.

Barbora Konopová, Elisa Buchberger, Alastair Crisp
Author Information
  1. Barbora Konopová: 1Department of Zoology, University of Cambridge, Cambridge, UK. ORCID
  2. Elisa Buchberger: 4Department of Developmental Biology, University of Göttingen, Göttingen, Germany.
  3. Alastair Crisp: 5MRC Laboratory of Molecular Biology, Cambridge, UK.

Abstract

BACKGROUND: Pleuropodia are limb-derived glandular organs that transiently appear on the first abdominal segment in embryos of insects from majority of "orders". They are missing in the genetic model and little is known about them. Experiments carried out on orthopteran insects 80 years ago indicated that the pleuropodia secrete a "hatching enzyme" that digests the serosal cuticle to enable the larva to hatch, but evidence by state-of-the-art molecular methods is missing.
RESULTS: We used high-throughput RNA-sequencing to identify the genes expressed in the pleuropodia of the locust (Orthoptera). First, using transmission electron microscopy we studied the development of the pleuropodia during 11 stages of the locust embryogenesis. We show that the glandular cells differentiate and start secreting just before the definitive dorsal closure of the embryo and the secretion granules outside the cells become more abundant prior to hatching. Next, we generated a comprehensive embryonic reference transcriptome for the locust and used it to study genome wide gene expression across ten morphologicaly defined stages of the pleuropodia. We show that when the pleuropodia have morphological markers of functional organs and produce secretion, they are primarily enriched in transcripts associated with transport functions. They express genes encoding enzymes capable of digesting cuticular protein and chitin. These include the potent cuticulo-lytic Chitinase 5, whose transcript rises just before hatching. Unexpected finding was the enrichment in transcripts for immunity-related enzymes. This indicates that the pleuropodia are equipped with epithelial immunity similarly as barrier epithelia in postembryonic stages.
CONCLUSIONS: These data provide transcriptomic support for the historic hypothesis that pleuropodia produce cuticle-degrading enzymes and function in hatching. They may also have other functions, such as facilitation of embryonic immune defense. By the genes that they express the pleuropodia are specialized embryonic organs and apparently an important though neglected part of insect physiology.

Keywords

References

  1. Sci Rep. 2016 Feb 03;6:18340 [PMID: 26838602]
  2. Bioinformatics. 2003 Mar 22;19(5):651-2 [PMID: 12651724]
  3. Insect Biochem Mol Biol. 2004 Sep;34(9):991-1010 [PMID: 15350618]
  4. Arch Anat Microsc Morphol Exp. 1970 Jul-Sep;59(3):201-20 [PMID: 5498978]
  5. J Morphol. 1981 Jun;168(3):339-355 [PMID: 30119587]
  6. Insect Biochem Mol Biol. 2015 May;60:7-12 [PMID: 25747006]
  7. Insect Mol Biol. 2009 Jun;18(3):353-63 [PMID: 19523067]
  8. Nat Protoc. 2013 Aug;8(8):1494-512 [PMID: 23845962]
  9. Mol Biol Evol. 2018 Mar 1;35(3):543-548 [PMID: 29220515]
  10. PLoS One. 2013;8(2):e55131 [PMID: 23383307]
  11. Genome Res. 2011 Dec;21(12):2213-23 [PMID: 21903743]
  12. PLoS Genet. 2018 Mar 28;14(3):e1007307 [PMID: 29590098]
  13. Dev Genes Evol. 2001 Oct;211(10):467-77 [PMID: 11702196]
  14. Cell Rep. 2016 Jun 28;16(1):247-262 [PMID: 27320926]
  15. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W71-4 [PMID: 17485472]
  16. Annu Rev Immunol. 2007;25:697-743 [PMID: 17201680]
  17. Insect Mol Biol. 2004 Aug;13(4):387-98 [PMID: 15271211]
  18. Development. 2007 Oct;134(20):3733-42 [PMID: 17804599]
  19. Bioinformatics. 2007 Sep 1;23(17):2334-6 [PMID: 17586542]
  20. J Proteome Res. 2014 Jun 6;13(6):2931-40 [PMID: 24779478]
  21. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  22. J Proteomics. 2018 Feb 20;173:115-125 [PMID: 29197581]
  23. Dev Biol. 2017 Sep 1;429(1):71-80 [PMID: 28733163]
  24. Nat Biotechnol. 2011 May 15;29(7):644-52 [PMID: 21572440]
  25. Proc Natl Acad Sci U S A. 2008 May 6;105(18):6650-5 [PMID: 18436642]
  26. J Morphol. 2005 Nov;266(2):182-207 [PMID: 16155878]
  27. Insect Biochem Mol Biol. 2018 Oct;101:124-130 [PMID: 30196080]
  28. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  29. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):13773-8 [PMID: 14610274]
  30. Dev Genes Evol. 1999 Oct;209(10):608-19 [PMID: 10552302]
  31. BMC Bioinformatics. 2010 Sep 27;11:485 [PMID: 20875133]
  32. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11043-8 [PMID: 12177427]
  33. Tissue Cell. 1973;5(3):441-50 [PMID: 4126730]
  34. Genome Biol. 2010;11(2):R14 [PMID: 20132535]
  35. Curr Top Dev Biol. 2017;121:29-81 [PMID: 28057304]
  36. Dev Biol. 2008 Jan 15;313(2):471-91 [PMID: 18082679]
  37. Development. 2000 Oct;127(19):4115-26 [PMID: 10976044]
  38. Insect Biochem Mol Biol. 2016 Aug;75:10-23 [PMID: 27180725]
  39. J Morphol. 2005 Jun;264(3):339-62 [PMID: 15838850]
  40. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  41. Insect Biochem Mol Biol. 2015 Mar;58:46-54 [PMID: 25623241]
  42. Bioinformatics. 2013 Sep 1;29(17):2146-52 [PMID: 23821648]
  43. Evol Dev. 2002 Nov-Dec;4(6):459-99 [PMID: 12492146]
  44. Genome Res. 2008 May;18(5):821-9 [PMID: 18349386]
  45. Biosci Biotechnol Biochem. 2014;78(8):1283-92 [PMID: 25130728]
  46. PLoS One. 2011;6(7):e21800 [PMID: 21789182]
  47. Insect Sci. 2013 Feb;20(1):109-19 [PMID: 23955831]
  48. Insect Mol Biol. 2015 Feb;24(1):29-40 [PMID: 25224926]
  49. Development. 1990 Nov;110(3):915-25 [PMID: 1982432]
  50. J Morphol. 1990 Jan;203(1):69-85 [PMID: 29865669]
  51. Insect Biochem Mol Biol. 2008 Apr;38(4):478-89 [PMID: 18342252]
  52. Insect Biochem Mol Biol. 2002 Sep;32(9):979-89 [PMID: 12213234]
  53. Dev Comp Immunol. 2016 Aug;61:60-9 [PMID: 26997372]
  54. Wilhelm Roux Arch Entwickl Mech Org. 1971 Sep;167(3):243-265 [PMID: 28304664]
  55. Bioinformatics. 2012 Apr 15;28(8):1086-92 [PMID: 22368243]
  56. Dev Biol. 2009 Jun 15;330(2):462-70 [PMID: 19298808]
  57. Elife. 2014 Dec 09;3:null [PMID: 25487990]
  58. Nat Methods. 2008 Jul;5(7):621-8 [PMID: 18516045]
  59. Arthropod Struct Dev. 2015 Jan;44(1):42-68 [PMID: 25462667]
  60. J Biol Chem. 2014 Dec 26;289(52):35891-906 [PMID: 25368323]
  61. J Morphol. 2014 Mar;275(3):295-312 [PMID: 24136564]
  62. Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32 [PMID: 17483518]
  63. J Biol Chem. 2004 Aug 20;279(34):35942-9 [PMID: 15197185]
  64. Nat Rev Immunol. 2014 Dec;14(12):796-810 [PMID: 25421701]
  65. Gene Expr Patterns. 2005 Apr;5(4):491-502 [PMID: 15749077]
  66. Sci Rep. 2017 Feb 23;7:43273 [PMID: 28230183]
  67. Dev Biol. 2005 Nov 15;287(2):440-55 [PMID: 16183053]
  68. Dev Growth Differ. 2007 Sep;49(7):611-21 [PMID: 17716305]
  69. Annu Rev Entomol. 2016;61:177-96 [PMID: 26982439]
  70. J Insect Physiol. 2011 Sep;57(9):1240-8 [PMID: 21708158]
  71. J Insect Physiol. 2012 Jul;58(7):890-6 [PMID: 22465741]
  72. Proc Natl Acad Sci U S A. 2000 Apr 25;97(9):4504-9 [PMID: 10781052]

Word Cloud

Created with Highcharts 10.0.0pleuropodiaorganslocustenzymesgenesstageshatchingembryonicproduceglandularembryosinsectsmissinglarvahatchusedOrthopterashowcellsjustsecretiontranscriptsfunctionsexpressBACKGROUND:Pleuropodialimb-derivedtransientlyappearfirstabdominalsegmentmajority"orders"geneticmodellittleknownExperimentscarriedorthopteran80yearsagoindicatedsecrete"hatchingenzyme"digestsserosalcuticleenableevidencestate-of-the-artmolecularmethodsRESULTS:high-throughputRNA-sequencingidentifyexpressedFirstusingtransmissionelectronmicroscopystudieddevelopment11embryogenesisdifferentiatestartsecretingdefinitivedorsalclosureembryogranulesoutsidebecomeabundantpriorNextgeneratedcomprehensivereferencetranscriptomestudygenomewidegeneexpressionacrosstenmorphologicalydefinedmorphologicalmarkersfunctionalprimarilyenrichedassociatedtransportencodingcapabledigestingcuticularproteinchitinincludepotentcuticulo-lyticChitinase5whosetranscriptrisesUnexpectedfindingenrichmentimmunity-relatedindicatesequippedepithelialimmunitysimilarlybarrierepitheliapostembryonicCONCLUSIONS:dataprovidetranscriptomicsupporthistorichypothesiscuticle-degradingfunctionmayalsofacilitationimmunedefensespecializedapparentlyimportantthoughneglectedpartinsectphysiologyTranscriptomesupportsenablingAppendageCuticleEcdysoneEmbryoGlandImmunityMoultingfluidRNA-seqSchistocercagregaria

Similar Articles

Cited By (2)