Using Parsimony-Guided Tree Proposals to Accelerate Convergence in Bayesian Phylogenetic Inference.

Chi Zhang, John P Huelsenbeck, Fredrik Ronquist
Author Information
  1. Chi Zhang: Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 XizhimenWai Street, Beijing 100044, China.
  2. John P Huelsenbeck: Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.
  3. Fredrik Ronquist: Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, SE-10405 Stockholm, Sweden.

Abstract

Sampling across tree space is one of the major challenges in Bayesian phylogenetic inference using Markov chain Monte Carlo (MCMC) algorithms. Standard MCMC tree moves consider small random perturbations of the topology, and select from candidate trees at random or based on the distance between the old and new topologies. MCMC algorithms using such moves tend to get trapped in tree space, making them slow in finding the globally most probable trees (known as "convergence") and in estimating the correct proportions of the different types of them (known as "mixing"). Here, we introduce a new class of moves, which propose trees based on their parsimony scores. The proposal distribution derived from the parsimony scores is a quickly computable albeit rough approximation of the conditional posterior distribution over candidate trees. We demonstrate with simulations that parsimony-guided moves correctly sample the uniform distribution of topologies from the prior. We then evaluate their performance against standard moves using six challenging empirical data sets, for which we were able to obtain accurate reference estimates of the posterior using long MCMC runs, a mix of topology proposals, and Metropolis coupling. On these data sets, ranging in size from 357 to 934 taxa and from 1740 to 5681 sites, we find that single chains using parsimony-guided moves usually converge an order of magnitude faster than chains using standard moves. They also exhibit better mixing, that is, they cover the most probable trees more quickly. Our results show that tree moves based on quick and dirty estimates of the posterior probability can significantly outperform standard moves. Future research will have to show to what extent the performance of such moves can be improved further by finding better ways of approximating the posterior probability, taking the trade-off between accuracy and speed into account. [Bayesian phylogenetic inference; MCMC; parsimony; tree proposal.].

References

  1. J Mol Evol. 1980 Dec;16(2):111-20 [PMID: 7463489]
  2. Syst Biol. 2013 Jul;62(4):501-11 [PMID: 23479066]
  3. Syst Biol. 2008 Jun;57(3):406-19 [PMID: 18570035]
  4. Syst Biol. 2012 Oct;61(5):779-84 [PMID: 22328570]
  5. Syst Biol. 2008 Feb;57(1):86-103 [PMID: 18278678]
  6. Syst Biol. 2012 Jan;61(1):1-11 [PMID: 21828081]
  7. Bioinformatics. 2001 Aug;17(8):754-5 [PMID: 11524383]
  8. J Mol Evol. 1994 Sep;39(3):306-14 [PMID: 7932792]
  9. Syst Biol. 2015 May;64(3):472-91 [PMID: 25631175]
  10. New Phytol. 2012 Jan;193(2):304-12 [PMID: 22115274]
  11. Mol Ecol. 2012 Jul;21(13):3308-24 [PMID: 22571598]
  12. Syst Biol. 2012 Jul;61(4):579-93 [PMID: 22223445]
  13. Am J Bot. 2012 Dec;99(12):1991-2013 [PMID: 23221500]
  14. Syst Biol. 2012 Dec 1;61(6):973-99 [PMID: 22723471]
  15. Syst Biol. 2016 Jul;65(4):726-36 [PMID: 27235697]
  16. Syst Biol. 2000 Jun;49(2):306-62 [PMID: 12118410]
  17. PLoS Comput Biol. 2014 Apr 10;10(4):e1003537 [PMID: 24722319]
  18. Mol Biol Evol. 2014 Oct;31(10):2553-6 [PMID: 25135941]
  19. BMC Evol Biol. 2007 Nov 08;7:214 [PMID: 17996036]
  20. J Mol Evol. 1996 Sep;43(3):304-11 [PMID: 8703097]
  21. Cladistics. 1998 Dec;14(4):387-400 [PMID: 34929920]
  22. Syst Biol. 2005 Dec;54(6):961-5 [PMID: 16385776]
  23. Am J Bot. 2010 Dec;97(12):2031-48 [PMID: 21616850]
  24. Syst Biol. 2012 May;61(3):539-42 [PMID: 22357727]
  25. Nat Rev Genet. 2012 Mar 28;13(5):303-14 [PMID: 22456349]
  26. Bioinformatics. 2003 Aug 12;19(12):1572-4 [PMID: 12912839]
  27. Nat Ecol Evol. 2017 Oct;1(10):1446-1454 [PMID: 28983516]
  28. Science. 2001 Dec 14;294(5550):2310-4 [PMID: 11743192]
  29. Mol Biol Evol. 1997 Jul;14(7):717-24 [PMID: 9214744]
  30. Comput Appl Biosci. 1997 Jun;13(3):235-8 [PMID: 9183526]
  31. Nat Rev Genet. 2003 Apr;4(4):275-84 [PMID: 12671658]
  32. New Phytol. 2011 Aug;191(3):789-794 [PMID: 21453289]

MeSH Term

Algorithms
Bayes Theorem
Classification
Models, Biological
Phylogeny

Word Cloud

Created with Highcharts 10.0.0movesusingtreeMCMCtreesposteriorbasedparsimonydistributionstandardspaceBayesianphylogeneticinferencealgorithmsrandomtopologycandidatenewtopologiesfindingprobableknownscoresproposalquicklyparsimony-guidedperformancedatasetsestimateschainsbettershowprobabilitycanSamplingacrossonemajorchallengesMarkovchainMonteCarloStandardconsidersmallperturbationsselectdistanceoldtendgettrappedmakingslowglobally"convergence"estimatingcorrectproportionsdifferenttypes"mixing"introduceclassproposederivedcomputablealbeitroughapproximationconditionaldemonstratesimulationscorrectlysampleuniformpriorevaluatesixchallengingempiricalableobtainaccuratereferencelongrunsmixproposalsMetropoliscouplingrangingsize357934taxa17405681sitesfindsingleusuallyconvergeordermagnitudefasteralsoexhibitmixingcoverresultsquickdirtysignificantlyoutperformFutureresearchwillextentimprovedwaysapproximatingtakingtrade-offaccuracyspeedaccount[Bayesian]UsingParsimony-GuidedTreeProposalsAccelerateConvergencePhylogeneticInference

Similar Articles

Cited By