Fluorescence Assessment of the AmpR-Signaling Network of to Exposure to β-Lactam Antibiotics.

David A Dik, Choon Kim, Chinedu S Madukoma, Jed F Fisher, Joshua D Shrout, Shahriar Mobashery
Author Information
  1. David A Dik: Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID
  2. Choon Kim: Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID
  3. Chinedu S Madukoma: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID
  4. Jed F Fisher: Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID
  5. Joshua D Shrout: Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID
  6. Shahriar Mobashery: Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States. ORCID

Abstract

Gram-negative bacteria have evolved an elaborate pathway to sense and respond to exposure to β-lactam antibiotics. The β-lactam antibiotics inhibit penicillin-binding proteins, whereby the loss of their activities alters/damages the cell-wall peptidoglycan. Bacteria sense this damage and remove the affected peptidoglycan into complex recycling pathways. As an offshoot of these pathways, muropeptide chemical signals generated from the cell-wall recycling manifest the production of a class C β-lactamase, which hydrolytically degrades the β-lactam antibiotic as a resistance mechanism. We disclose the use of a fluorescence probe that detects the activation of the recycling system by the formation of the key muropeptides involved in signaling. This same probe additionally detects natural-product cell-wall-active antibiotics that are produced by cohabitating bacteria.

References

  1. J Am Chem Soc. 2015 Jan 14;137(1):190-200 [PMID: 25495032]
  2. Drugs. 2013 Feb;73(2):159-77 [PMID: 23371303]
  3. Antimicrob Agents Chemother. 2008 Oct;52(10):3694-700 [PMID: 18644952]
  4. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):315-20 [PMID: 8405939]
  5. PLoS One. 2012;7(3):e34067 [PMID: 22479525]
  6. Antimicrob Agents Chemother. 1999 Feb;43(2):400-2 [PMID: 9925544]
  7. J Biol Chem. 2011 Sep 9;286(36):31714-22 [PMID: 21775432]
  8. J Infect Dis. 2019 Oct 22;220(11):1729-1737 [PMID: 31325363]
  9. Antimicrob Agents Chemother. 2014 Sep;58(9):5084-95 [PMID: 24936599]
  10. J Med Microbiol. 2014 Apr;63(Pt 4):544-555 [PMID: 24464693]
  11. Eur J Clin Microbiol Infect Dis. 2020 Feb;39(2):385-392 [PMID: 31707508]
  12. ACS Infect Dis. 2017 Aug 11;3(8):559-563 [PMID: 28548487]
  13. EMBO J. 1994 Oct 3;13(19):4684-94 [PMID: 7925310]
  14. J Am Chem Soc. 2017 Feb 1;139(4):1448-1451 [PMID: 28079369]
  15. PLoS Pathog. 2009 Mar;5(3):e1000353 [PMID: 19325877]
  16. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2938-42 [PMID: 16592422]
  17. J Bacteriol. 2019 Sep 6;201(19): [PMID: 31308071]
  18. J Am Chem Soc. 2009 Apr 15;131(14):5187-93 [PMID: 19309146]
  19. Proc Natl Acad Sci U S A. 2018 Apr 24;115(17):4393-4398 [PMID: 29632171]
  20. BMC Microbiol. 2016 Oct 6;16(1):234 [PMID: 27716106]
  21. Cell. 2014 Dec 4;159(6):1300-11 [PMID: 25480295]
  22. Int J Biochem Cell Biol. 2008;40(4):586-91 [PMID: 17468031]
  23. Gene. 1990 Mar 1;87(1):145-9 [PMID: 2110095]
  24. Nat Rev Microbiol. 2019 Mar;17(3):141-155 [PMID: 30683887]
  25. J Med Microbiol. 2018 Jan;67(1):1-21 [PMID: 29185941]
  26. Nature. 1981 Feb 12;289(5798):590-1 [PMID: 7007891]
  27. ACS Chem Biol. 2017 Oct 20;12(10):2552-2557 [PMID: 28937735]
  28. J Am Chem Soc. 2013 Apr 3;135(13):4950-3 [PMID: 23510438]
  29. Nat Chem Biol. 2018 Jan;14(1):5-7 [PMID: 29155429]
  30. mSystems. 2019 Dec 3;4(6): [PMID: 31796566]
  31. Biochemistry. 2017 Dec 5;56(48):6317-6320 [PMID: 29131935]
  32. ACS Infect Dis. 2018 Jun 8;4(6):860-867 [PMID: 29716193]
  33. ACS Chem Biol. 2012 Feb 17;7(2):252-9 [PMID: 22074935]
  34. Pathog Dis. 2015 Mar;73(2):1-14 [PMID: 25066236]
  35. J Antimicrob Chemother. 2019 Sep 1;74(9):2640-2648 [PMID: 31139830]
  36. Antimicrob Agents Chemother. 2013 Dec;57(12):5987-93 [PMID: 24041903]
  37. Sci Rep. 2018 Mar 7;8(1):4110 [PMID: 29515200]
  38. ACS Chem Biol. 2012 May 18;7(5):835-40 [PMID: 22428872]
  39. J Am Chem Soc. 2017 May 24;139(20):6795-6798 [PMID: 28482153]
  40. Proc Natl Acad Sci U S A. 2003 Nov 25;100(24):14339-44 [PMID: 14617778]
  41. mBio. 2015 Sep 01;6(5):e00981-15 [PMID: 26330513]
  42. Mol Microbiol. 1995 Feb;15(3):553-9 [PMID: 7783625]
  43. J Bacteriol. 1996 Sep;178(18):5347-52 [PMID: 8808921]
  44. J Med Chem. 2019 Oct 10;62(19):8665-8681 [PMID: 31063379]
  45. Antimicrob Agents Chemother. 2010 Sep;54(9):3557-63 [PMID: 20566764]
  46. FEMS Microbiol Rev. 2018 Nov 1;42(6):721-738 [PMID: 30053041]
  47. Microb Drug Resist. 2016 Sep;22(6):470-6 [PMID: 27326855]
  48. J Vis Exp. 2015 Apr 07;(98): [PMID: 25938934]
  49. J Mol Biol. 2000 Dec 1;304(3):435-45 [PMID: 11090285]
  50. Antimicrob Agents Chemother. 1972 Apr;1(4):283-8 [PMID: 4208895]
  51. Antimicrob Agents Chemother. 2008 Apr;52(4):1510-2 [PMID: 18250190]
  52. J Bacteriol. 2008 Oct;190(20):6922-6 [PMID: 18708507]
  53. Antimicrob Agents Chemother. 2011 May;55(5):1990-6 [PMID: 21357303]
  54. J Gen Microbiol. 1979 Aug;113(2):261-6 [PMID: 117077]
  55. Lancet Infect Dis. 2019 Jan;19(1):4-6 [PMID: 30409682]
  56. Cell Chem Biol. 2017 Jan 19;24(1):24-34 [PMID: 28017601]
  57. Mol Microbiol. 2014 Jul;93(1):113-28 [PMID: 24806796]
  58. J Infect Dis. 2019 Oct 22;220(11):1713-1715 [PMID: 31325362]
  59. Crit Rev Biochem Mol Biol. 2017 Oct;52(5):503-542 [PMID: 28644060]
  60. J Microbiol Methods. 2006 Mar;64(3):391-7 [PMID: 15987659]
  61. Ann N Y Acad Sci. 2013 Jan;1277:54-75 [PMID: 23163477]
  62. Mol Microbiol. 2003 Jun;48(5):1171-82 [PMID: 12787347]
  63. Mol Microbiol. 2001 Jul;41(1):167-78 [PMID: 11454209]
  64. Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6882-6 [PMID: 27111486]
  65. ACS Chem Biol. 2016 Sep 16;11(9):2626-35 [PMID: 27442597]
  66. Clin Microbiol Rev. 1995 Oct;8(4):557-84 [PMID: 8665470]
  67. J Bacteriol. 1999 Jan;181(1):24-33 [PMID: 9864308]
  68. BMC Microbiol. 2010 Dec 30;10:328 [PMID: 21192796]
  69. Mol Microbiol. 2016 Feb;99(4):700-18 [PMID: 26507882]
  70. Nat Ecol Evol. 2018 Jun;2(6):1033-1039 [PMID: 29686236]
  71. J Antibiot (Tokyo). 1981 Sep;34(9):1081-9 [PMID: 7328050]
  72. J Biol Chem. 1988 Jul 25;263(21):10088-95 [PMID: 3292521]
  73. J Bacteriol. 2014 Nov;196(22):3890-902 [PMID: 25182487]
  74. Nat Prod Rep. 2017 Jul 1;34(7):694-701 [PMID: 28569300]
  75. J Biol Chem. 2015 Jan 30;290(5):2630-43 [PMID: 25480792]
  76. Clin Microbiol Rev. 2015 Apr;28(2):337-418 [PMID: 25788514]
  77. J Bacteriol. 2011 Sep;193(18):4973-83 [PMID: 21764913]
  78. J Clin Microbiol. 2005 Dec;43(12):5945-9 [PMID: 16333080]
  79. J Bacteriol. 2012 Dec;194(23):6387-9 [PMID: 22984262]
  80. ACS Chem Biol. 2019 Feb 15;14(2):296-303 [PMID: 30620575]
  81. Bioorg Chem. 2014 Oct;56:41-8 [PMID: 24955547]
  82. Antimicrob Agents Chemother. 2010 Mar;54(3):969-76 [PMID: 19995920]
  83. Am J Respir Crit Care Med. 2015 Apr 1;191(7):775-85 [PMID: 25590983]
  84. J Antimicrob Chemother. 2010 Jul;65(7):1540-2 [PMID: 20435778]
  85. Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11347-52 [PMID: 26305949]
  86. Antimicrob Agents Chemother. 2015 May;59(5):2785-90 [PMID: 25733506]
  87. Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2735-2739 [PMID: 28128504]
  88. Antimicrob Agents Chemother. 2012 Sep;56(9):4771-8 [PMID: 22733064]
  89. Chem Rev. 2018 Jun 27;118(12):5952-5984 [PMID: 29847102]
  90. Antimicrob Agents Chemother. 2006 Jan;50(1):230-6 [PMID: 16377691]
  91. Cell. 1997 Mar 21;88(6):823-32 [PMID: 9118225]

Grants

  1. R01 AI113219/NIAID NIH HHS
  2. R35 GM131685/NIGMS NIH HHS
  3. T32 GM075762/NIGMS NIH HHS

MeSH Term

Anti-Bacterial Agents
Bacterial Proteins
Biological Products
Cell Wall
Fluorescent Dyes
Metabolome
Optical Imaging
Penicillin-Binding Proteins
Pseudomonas aeruginosa
Signal Transduction
beta-Lactam Resistance
beta-Lactams

Chemicals

Anti-Bacterial Agents
Bacterial Proteins
Biological Products
Fluorescent Dyes
Penicillin-Binding Proteins
beta-Lactams
AmpR protein, Bacteria

Word Cloud

Created with Highcharts 10.0.0β-lactamantibioticsrecyclingbacteriasensecell-wallpeptidoglycanpathwaysprobedetectsGram-negativeevolvedelaboratepathwayrespondexposureinhibitpenicillin-bindingproteinswherebylossactivitiesalters/damagesBacteriadamageremoveaffectedcomplexoffshootmuropeptidechemicalsignalsgeneratedmanifestproductionclassCβ-lactamasehydrolyticallydegradesantibioticresistancemechanismdiscloseusefluorescenceactivationsystemformationkeymuropeptidesinvolvedsignalingadditionallynatural-productcell-wall-activeproducedcohabitatingFluorescenceAssessmentAmpR-SignalingNetworkExposureβ-LactamAntibiotics

Similar Articles

Cited By