Whole-Brain Functional Networks for Phonological and Orthographic Processing in Chinese Good and Poor Readers.

Jing Yang, Li Hai Tan
Author Information
  1. Jing Yang: Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou, China.
  2. Li Hai Tan: Center for Brain Disorders and Cognitive Science, Shenzhen University, Shenzhen, China.

Abstract

The neural basis of dyslexia in different languages remains unresolved, and it is unclear whether the phonological deficit as the core deficit of dyslexia is language-specific or universal. The current functional magnetic resonance imaging (fMRI) study using whole-brain data-driven network analyses investigated the neural mechanisms for phonological and orthographic processing in Chinese children with good and poor reading ability. Sixteen good readers and 16 poor readers were requested to make homophone judgments (phonological processing) and component judgments (visual-orthographic processing) of presented Chinese characters. Poor readers displayed worse performance than the good readers in phonological processing, but not in orthographic processing. Whole-brain activation analyses showed compensatory activations in the poor readers during phonological processing and automatic phonological production activation in the good readers during orthographic processing. Significant group differences in the topological properties of their brain networks were found only in orthographic processing. Analyses of nodal degree centrality and betweenness centrality revealed significant group differences in both phonological and orthographic processing. The present study supports the phonological core deficit hypothesis of reading difficulty in Chinese. It also suggests that Chinese good and poor readers might recruit different strategies and neural mechanisms for orthographic processing.

Keywords

References

  1. Brain. 2010 Jun;133(Pt 6):1694-706 [PMID: 20488886]
  2. Cereb Cortex. 2009 Apr;19(4):832-8 [PMID: 18678765]
  3. Sci Rep. 2017 Mar 07;7:43089 [PMID: 28266518]
  4. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8781-5 [PMID: 15939871]
  5. Nat Rev Neurosci. 2004 Mar;5(3):184-94 [PMID: 14976518]
  6. Arch Neurol. 1997 May;54(5):562-73 [PMID: 9152113]
  7. Neuroimage. 2016 Mar;128:316-327 [PMID: 26774610]
  8. Psychol Res. 1981;43(2):219-34 [PMID: 7302091]
  9. Hum Brain Mapp. 2003 Mar;18(3):201-7 [PMID: 12599278]
  10. Child Dev. 2001 May-Jun;72(3):816-33 [PMID: 11405584]
  11. Dev Sci. 2010 Jul;13(4):F8-F14 [PMID: 20590718]
  12. Brain Res. 2010 Oct 14;1356:73-84 [PMID: 20691675]
  13. Neuroimage. 2010 Apr 15;50(3):1313-9 [PMID: 20056157]
  14. Proc Natl Acad Sci U S A. 2007 Mar 6;104(10):4234-9 [PMID: 17360506]
  15. Biol Psychiatry. 2004 May 1;55(9):926-33 [PMID: 15110736]
  16. Mem Cognit. 2015 Aug;43(6):964-72 [PMID: 25707914]
  17. Curr Biol. 2009 Oct 13;19(19):R890-2 [PMID: 19825347]
  18. Dev Psychol. 2001 Nov;37(6):886-99 [PMID: 11699761]
  19. Science. 2001 Mar 16;291(5511):2165-7 [PMID: 11251124]
  20. Psychol Bull. 2005 Jan;131(1):3-29 [PMID: 15631549]
  21. Neuroreport. 2003 Aug 26;14(12):1557-62 [PMID: 14502075]
  22. Neuroimage. 2002 Jan;15(1):273-89 [PMID: 11771995]
  23. Neuroimage. 2016 Aug 15;137:165-177 [PMID: 27236083]
  24. Cognition. 1995 Jan;54(1):73-98 [PMID: 7851080]
  25. Nature. 2004 Sep 2;431(7004):71-6 [PMID: 15343334]
  26. Brain Lang. 2012 Apr;121(1):1-11 [PMID: 22377262]
  27. Brain Lang. 2008 Nov;107(2):91-101 [PMID: 18226833]
  28. J Learn Disabil. 2000 Jul-Aug;33(4):387-407 [PMID: 15493099]
  29. Lancet. 1999 Mar 27;353(9158):1031-2 [PMID: 10199346]
  30. PLoS One. 2013 Jul 04;8(7):e68910 [PMID: 23861951]
  31. Front Hum Neurosci. 2015 Jun 30;9:386 [PMID: 26175682]
  32. Res Dev Disabil. 2018 Mar;74:146-159 [PMID: 29413429]
  33. PLoS One. 2013 Oct 01;8(10):e76823 [PMID: 24098565]
  34. Dev Psychol. 2002 Jul;38(4):543-53 [PMID: 12090484]
  35. J Child Psychol Psychiatry. 2006 Oct;47(10):1041-50 [PMID: 17073983]
  36. Brain Res. 2006 Oct 3;1113(1):174-85 [PMID: 16934234]
  37. Neuroimage. 2017 Jul 1;154:169-173 [PMID: 27888059]
  38. Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8939-44 [PMID: 9671783]
  39. Neuroimage. 2010 Sep;52(3):1059-69 [PMID: 19819337]
  40. Dyslexia. 2010 Nov;16(4):283-99 [PMID: 20957684]
  41. Neuropsychologia. 2009 Mar;47(4):1193-9 [PMID: 19056407]
  42. Science. 2013 Dec 6;342(6163):1251-4 [PMID: 24311693]
  43. Psychol Sci. 2011 Nov;22(11):1442-51 [PMID: 22006060]
  44. Neuroimage. 2011 Jun 1;56(3):1735-42 [PMID: 21338695]
  45. Hum Brain Mapp. 2013 Jul;34(7):1670-84 [PMID: 22378588]
  46. Neuroimage. 2011 Aug 1;57(3):733-41 [PMID: 21029785]
  47. Brain. 1999 Oct;122 ( Pt 10):1901-17 [PMID: 10506092]
  48. Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5561-6 [PMID: 18391194]
  49. Science. 1996 Jan 5;271(5245):77-81 [PMID: 8539603]
  50. Restor Neurol Neurosci. 2007;25(3-4):295-310 [PMID: 17943007]
  51. Neuroreport. 2001 Feb 12;12(2):299-307 [PMID: 11209939]
  52. Hum Brain Mapp. 2013 Nov;34(11):3055-65 [PMID: 22711189]
  53. Brain. 2009 Jul;132(Pt 7):1928-40 [PMID: 19467990]
  54. Q J Exp Psychol (Hove). 2013;66(2):245-60 [PMID: 22928494]
  55. Science. 1996 Jan 5;271(5245):81-4 [PMID: 8539604]
  56. Trends Cogn Sci. 2010 Feb;14(2):57-63 [PMID: 20080053]
  57. Neuroimage. 1998 Feb;7(2):119-32 [PMID: 9558644]
  58. Neurosci Lett. 2015 Mar 4;589:169-75 [PMID: 25597882]
  59. Psychol Sci. 2012 Jun;23(6):572-7 [PMID: 22539335]
  60. Neuropsychologia. 1971 Mar;9(1):97-113 [PMID: 5146491]
  61. Cogn Behav Neurol. 2011 Jun;24(2):85-92 [PMID: 21697712]
  62. Neuroimage. 2019 Apr 15;190:213-223 [PMID: 29223742]
  63. Brain Lang. 1998 Apr;62(2):298-308 [PMID: 9576825]
  64. Biol Psychiatry. 2014 Sep 1;76(5):397-404 [PMID: 24124929]
  65. PLoS Comput Biol. 2007 Feb 2;3(2):e17 [PMID: 17274684]
  66. Neuroimage. 2017 Feb 1;146:301-311 [PMID: 27890803]
  67. Vision Res. 2006 Mar;46(5):718-23 [PMID: 16260023]
  68. Proc Natl Acad Sci U S A. 1998 Mar 3;95(5):2636-41 [PMID: 9482939]
  69. Brain Lang. 1976 Jan;3(1):1-15 [PMID: 773516]
  70. Neuropsychologia. 2009 Oct;47(12):2544-57 [PMID: 19433099]
  71. Nat Neurosci. 2003 Jul;6(7):767-73 [PMID: 12754516]
  72. Front Hum Neurosci. 2014 Nov 11;8:830 [PMID: 25426043]
  73. Pediatr Rev. 2003 May;24(5):147-53 [PMID: 12728187]
  74. Neuroimage. 2017 Jan 1;144(Pt A):92-100 [PMID: 27688204]
  75. Brain Lang. 2006 Sep;98(3):341-3 [PMID: 16040110]
  76. J Exp Child Psychol. 2009 Jun;103(2):202-21 [PMID: 19278686]
  77. Cognition. 2007 Aug;104(2):198-230 [PMID: 16859667]
  78. J Exp Child Psychol. 2003 Nov;86(3):169-93 [PMID: 14559203]
  79. PLoS One. 2011;6(9):e25031 [PMID: 21949842]
  80. Neuroimage. 2009 Oct 1;47(4):1940-9 [PMID: 19446640]
  81. Brain Res. 2007 Feb 16;1133(1):136-44 [PMID: 17189619]
  82. Front Neurosci. 2014 Sep 11;8:289 [PMID: 25309312]
  83. Q J Exp Psychol (Hove). 2008 Jan;61(1):129-41 [PMID: 18038344]
  84. J Exp Child Psychol. 1998 Oct;71(1):3-27 [PMID: 9742182]

Word Cloud

Created with Highcharts 10.0.0processingphonologicalorthographicreadersChinesedeficitgoodpoorneuraldyslexiadifferentcorefunctionalstudynetworkanalysesmechanismsreadingjudgmentsPooractivationgroupdifferencesbraincentralitybasislanguagesremainsunresolvedunclearwhetherlanguage-specificuniversalcurrentmagneticresonanceimagingfMRIusingwhole-braindata-driveninvestigatedchildrenabilitySixteen16requestedmakehomophonecomponentvisual-orthographicpresentedcharactersdisplayedworseperformanceWhole-brainshowedcompensatoryactivationsautomaticproductionSignificanttopologicalpropertiesnetworksfoundAnalysesnodaldegreebetweennessrevealedsignificantpresentsupportshypothesisdifficultyalsosuggestsmightrecruitstrategiesWhole-BrainFunctionalNetworksPhonologicalOrthographicProcessingGoodReaders

Similar Articles

Cited By