Comparing Cathelicidin Susceptibility of the Meningitis Pathogens and in Culture Medium in Contrast to Porcine or Human Cerebrospinal Fluid.

Marita Meurer, Nicole de Buhr, Linn Meret Unger, Marta C Bonilla, Jana Seele, Roland Nau, Christoph G Baums, Thomas Gutsmann, Stefan Schwarz, Maren von Köckritz-Blickwede
Author Information
  1. Marita Meurer: Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
  2. Nicole de Buhr: Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
  3. Linn Meret Unger: Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
  4. Marta C Bonilla: Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.
  5. Jana Seele: Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
  6. Roland Nau: Department of Neuropathology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
  7. Christoph G Baums: Institute of Bacteriology and Mycology, Center for Infectious Diseases, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany.
  8. Thomas Gutsmann: Research Group Biophysics, Research Center Borstel, Borstel, Germany.
  9. Stefan Schwarz: Department of Veterinary Medicine, Institute of Microbiology and Epizootics, Center for Infection Medicine, Freie Universität Berlin, Berlin, Germany.
  10. Maren von Köckritz-Blickwede: Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.

Abstract

Host defense peptides or antimicrobial peptides (AMPs), e.g., cathelicidins, have recently been discussed as a potential new treatment option against bacterial infections. To test the efficacy of AMPs, standardized methods that closely mimic the physiological conditions at the site of infection are still needed. The aim of our study was to test the meningitis-causing bacteria and for their susceptibility to cathelicidins in culture medium versus cerebrospinal fluid (CSF). Susceptibility testing was performed in analogy to the broth microdilution method described by the Clinical and Laboratory Standard Institute (CLSI) to determine minimum inhibitory concentrations (MICs) of antimicrobial agents. MICs were determined using cation-adjusted Mueller-Hinton broth (CA-MHB), lysogeny broth (LB), Roswell Park Memorial Institute medium (RPMI) or Dulbecco's Modified Eagle's Medium (DMEM) (the latter two supplemented with 5% CA-MHB or blood) and compared with MICs obtained in porcine or human CSF. Our data showed that MICs obtained in CA-MHB as recommended by CLSI do not reflect the MICs obtained in the physiological body fluid CSF. However, the MICs of clinical isolates of tested in RPMI medium supplemented with CA-MHB, were similar to those of the same strains tested in CSF. In contrast, the MICs in the human CSF for the tested K1 strain were higher compared to the RPMI medium and showed even higher values than in CA-MHB. This highlights the need for susceptibility testing of AMPs in a medium that closely mimics the clinically relevant conditions.

Keywords

References

  1. Clin Infect Dis. 2009 Mar 1;48(5):617-25 [PMID: 19191650]
  2. Nature. 1960 Apr 9;186:161-2 [PMID: 14405454]
  3. Vet Res. 2018 Jun 15;49(1):48 [PMID: 29903042]
  4. Emerg Microbes Infect. 2014 Jun;3(6):e45 [PMID: 26038745]
  5. Infect Immun. 2006 Nov;74(11):6154-62 [PMID: 17057090]
  6. Vet Microbiol. 2017 Oct;210:107-115 [PMID: 29103679]
  7. Clin Perinatol. 2015 Mar;42(1):29-45, vii-viii [PMID: 25677995]
  8. J Neuroinflammation. 2011 May 18;8:51 [PMID: 21592385]
  9. Vet Microbiol. 2016 Oct 15;194:107-111 [PMID: 26453316]
  10. J Biol Chem. 1999 Mar 26;274(13):8405-10 [PMID: 10085071]
  11. Vet Microbiol. 2006 Jun 15;115(1-3):117-27 [PMID: 16431041]
  12. BMC Infect Dis. 2017 Mar 4;17(1):188 [PMID: 28257622]
  13. PLoS One. 2014 Apr 22;9(4):e95939 [PMID: 24755622]
  14. EcoSal Plus. 2016 May;7(1): [PMID: 27223820]
  15. Nucleic Acids Res. 2016 Jan 4;44(D1):D1087-93 [PMID: 26602694]
  16. Am J Physiol Cell Physiol. 2017 May 1;312(5):C624-C626 [PMID: 28228375]
  17. Cell Microbiol. 2017 Feb;19(2): [PMID: 27450700]
  18. Protein Pept Lett. 2014 Apr;21(4):399-406 [PMID: 24164260]
  19. Vet Microbiol. 1996 Jul;51(1-2):125-36 [PMID: 8828129]
  20. J Cyst Fibros. 2004 Mar;3(1):45-50 [PMID: 15463886]
  21. J Clin Microbiol. 2015 Dec;53(12):3912-5 [PMID: 26424844]
  22. J Antimicrob Chemother. 2016 May;71(5):1264-9 [PMID: 26832758]
  23. Sci Rep. 2019 Mar 4;9(1):3331 [PMID: 30833614]
  24. Infect Immun. 2006 Dec;74(12):6982-91 [PMID: 17030578]
  25. Clin Infect Dis. 2015 Sep 1;61(5):779-86 [PMID: 25944342]
  26. EBioMedicine. 2015 Jun 10;2(7):690-8 [PMID: 26288841]
  27. Virulence. 2014 May 15;5(4):477-97 [PMID: 24667807]
  28. J Biol Chem. 2019 Nov 22;294(47):17962-17977 [PMID: 31619521]
  29. Adv Exp Med Biol. 2019;1117:215-240 [PMID: 30980360]
  30. Infect Immun. 2013 May;81(5):1810-9 [PMID: 23478323]
  31. Front Immunol. 2013 Jul 03;4:143 [PMID: 23840194]
  32. Infect Immun. 1999 Apr;67(4):1750-6 [PMID: 10085014]
  33. Front Cell Infect Microbiol. 2019 Feb 26;9:48 [PMID: 30863725]
  34. EBioMedicine. 2017 Jun;20:173-181 [PMID: 28579300]
  35. Curr Protein Pept Sci. 2005 Feb;6(1):23-34 [PMID: 15638766]
  36. AMB Express. 2017 Dec;7(1):44 [PMID: 28220445]
  37. FEBS Lett. 1995 Oct 23;374(1):1-5 [PMID: 7589491]
  38. J Clin Pathol. 1996 Mar;49(3):249-53 [PMID: 8675739]
  39. Clin Microbiol Rev. 2010 Oct;23(4):858-83 [PMID: 20930076]
  40. Vaccines (Basel). 2018 Sep 14;6(3): [PMID: 30223448]
  41. Microbiology (Reading). 2008 Aug;154(Pt 8):2522-2532 [PMID: 18667585]
  42. J Neuropathol Exp Neurol. 2008 Nov;67(11):1041-54 [PMID: 18957897]
  43. Antimicrob Agents Chemother. 2014;58(3):1494-500 [PMID: 24366742]

Word Cloud

Created with Highcharts 10.0.0MICsCSFmediumCA-MHBAMPsfluidbrothRPMIobtainedtestedpeptidesantimicrobialcathelicidinstestcloselyphysiologicalconditionssusceptibilitycerebrospinalSusceptibilitytestingInstituteCLSIMediumsupplementedcomparedhumanshowedhigherHostdefenseegrecentlydiscussedpotentialnewtreatmentoptionbacterialinfectionsefficacystandardizedmethodsmimicsiteinfectionstillneededaimstudymeningitis-causingbacteriacultureversusperformedanalogymicrodilutionmethoddescribedClinicalLaboratoryStandarddetermineminimuminhibitoryconcentrationsagentsdeterminedusingcation-adjustedMueller-HintonlysogenyLBRoswellParkMemorialDulbecco'sModifiedEagle'sDMEMlattertwo5%bloodporcinedatarecommendedreflectbodyHoweverclinicalisolatessimilarstrainscontrastK1strainevenvalueshighlightsneedmimicsclinicallyrelevantComparingCathelicidinMeningitisPathogensCultureContrastPorcineHumanCerebrospinalFluidAMPEscherichiacoliLL-37MICPR-39Streptococcussuis

Similar Articles

Cited By