Synergy of Ionic and Dipolar Effects by Molecular Design for pH Sensing beyond the Nernstian Limit.

Chiao-Wei Tseng, Chenyu Wen, Ding-Chi Huang, Chin-Hung Lai, Si Chen, Qitao Hu, Xi Chen, Xingxing Xu, Shi-Li Zhang, Yu-Tai Tao, Zhen Zhang
Author Information
  1. Chiao-Wei Tseng: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden. ORCID
  2. Chenyu Wen: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  3. Ding-Chi Huang: Institute of Chemistry Academia Sinica Taipei 115 Taiwan.
  4. Chin-Hung Lai: Department of Medical Applied Chemistry Chung Shan Medical University Taichung 40201 Taiwan. ORCID
  5. Si Chen: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  6. Qitao Hu: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  7. Xi Chen: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  8. Xingxing Xu: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  9. Shi-Li Zhang: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden.
  10. Yu-Tai Tao: Institute of Chemistry Academia Sinica Taipei 115 Taiwan.
  11. Zhen Zhang: Division of Solid-State Electronics The Ångström Laboratory Uppsala University SE-751 21 Uppsala Sweden. ORCID

Abstract

Knowledge of interfacial interactions between analytes and functionalized sensor surfaces, from where the signal originates, is key to the development and application of electronic sensors. The present work explores the tunability of pH sensitivity by the synergy of surface charge and molecular dipole moment induced by interfacial proton interactions. This synergy is demonstrated on a silicon-nanoribbon field-effect transistor (SiNR-FET) by functionalizing the sensor surface with properly designed chromophore molecules. The chromophore molecules can interact with protons and lead to appreciable changes in interface dipole moment as well as in surface charge state. In addition, the dipole moment can be tuned not only by the substituent on the chromophore but also by the anion in the electrolyte interacting with the protonated chromophore. By designing surface molecules to enhance the surface dipole moment upon protonation, an above-Nernstian pH sensitivity is achieved on the SiNR-FET sensor. This finding may bring an innovative strategy for tailoring the sensitivity of the SiNR-FET-based pH sensor toward a wide range of applications.

Keywords

References

  1. J Am Chem Soc. 2018 Oct 24;140(42):13672-13679 [PMID: 30277764]
  2. Analyst. 2014 Apr 21;139(8):2011-5 [PMID: 24611156]
  3. J Phys Chem A. 2008 May 15;112(19):4437-43 [PMID: 18402431]
  4. Langmuir. 2018 Nov 27;34(47):14103-14123 [PMID: 30253096]
  5. J Environ Public Health. 2012;2012:727630 [PMID: 22013455]
  6. Acc Chem Res. 2008 Jun;41(6):721-9 [PMID: 18507404]
  7. ACS Appl Mater Interfaces. 2018 Mar 28;10(12):10513-10519 [PMID: 29498274]
  8. Nanoscale Res Lett. 2014 Apr 12;9(1):179 [PMID: 24725352]
  9. Anal Chem. 2019 Jan 2;91(1):2-26 [PMID: 30335354]
  10. Chem Soc Rev. 2012 Mar 7;41(5):1809-25 [PMID: 22008710]
  11. Angew Chem Int Ed Engl. 2018 Oct 22;57(43):13968-13981 [PMID: 29992706]
  12. Pharmaceutics. 2018 Aug 22;10(3): [PMID: 30131473]
  13. Ground Water. 2003 Sep-Oct;41(5):701-8 [PMID: 13678124]
  14. ACS Appl Mater Interfaces. 2012 Oct 24;4(10):5483-91 [PMID: 22974132]
  15. Acc Chem Res. 2002 Feb;35(2):121-8 [PMID: 11851390]
  16. Nat Mater. 2018 May;17(5):464-470 [PMID: 29403057]
  17. Biosens Bioelectron. 2018 Feb 15;100:312-325 [PMID: 28942344]
  18. Langmuir. 2012 Jun 26;28(25):9899-905 [PMID: 22631046]
  19. J Am Chem Soc. 2018 May 9;140(18):5925-5933 [PMID: 29688713]
  20. J Am Chem Soc. 2008 Mar 26;130(12):4158-65 [PMID: 18314981]
  21. FEMS Microbiol Rev. 2014 Nov;38(6):1091-125 [PMID: 24898062]
  22. Chem Soc Rev. 2017 Jan 3;46(1):40-71 [PMID: 27722675]
  23. Sci Rep. 2017 Feb 02;7:41305 [PMID: 28150700]
  24. Nat Cell Biol. 2013 Feb;15(2):125 [PMID: 23377025]
  25. Adv Mater. 2018 Apr;30(14):e1706034 [PMID: 29450928]
  26. ACS Appl Mater Interfaces. 2018 Jul 5;10(26):22474-22484 [PMID: 29883081]
  27. Angew Chem Int Ed Engl. 2018 Apr 16;57(17):4590-4593 [PMID: 29473274]
  28. Chem Rev. 2010 Oct 13;110(10):5790-844 [PMID: 20939616]
  29. J Phys Chem A. 2009 Nov 26;113(47):13144-51 [PMID: 19618926]
  30. J Incl Phenom Macrocycl Chem. 2018;90(3):189-257 [PMID: 29568230]
  31. ACS Omega. 2017 Sep 26;2(9):6159-6166 [PMID: 31457862]
  32. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):834-9 [PMID: 26692009]
  33. Adv Sci (Weinh). 2019 Nov 27;7(2):1901001 [PMID: 31993278]
  34. ACS Appl Mater Interfaces. 2017 Dec 27;9(51):44873-44879 [PMID: 29206026]

Word Cloud

Created with Highcharts 10.0.0surfacepHdipolesensorsensitivitymomentchromophoremoleculesinterfacialinteractionssynergychargeSiNR-FETcanKnowledgeanalytesfunctionalizedsurfacessignaloriginateskeydevelopmentapplicationelectronicsensorspresentworkexplorestunabilitymolecularinducedprotondemonstratedsilicon-nanoribbonfield-effecttransistorfunctionalizingproperlydesignedinteractprotonsleadappreciablechangesinterfacewellstateadditiontunedsubstituentalsoanionelectrolyteinteractingprotonateddesigningenhanceuponprotonationabove-NernstianachievedfindingmaybringinnovativestrategytailoringSiNR-FET-basedtowardwiderangeapplicationsSynergyIonicDipolarEffectsMolecularDesignSensingbeyondNernstianLimitmomentsion‐sensitivefield‐effecttransistorssuper‐Nernstianresponsefunctionalization

Similar Articles

Cited By