The Function of NM23-H1/NME1 and Its Homologs in Major Processes Linked to Metastasis.

Barbara Mátyási, Zsolt Farkas, László Kopper, Anna Sebestyén, Mathieu Boissan, Anil Mehta, Krisztina Takács-Vellai
Author Information
  1. Barbara Mátyási: Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary.
  2. Zsolt Farkas: Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary.
  3. László Kopper: Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary.
  4. Anna Sebestyén: Department of Pathology and Experimental Cancer Research, Semmelweis University, 1st, Budapest, Hungary.
  5. Mathieu Boissan: Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, F-75012, Paris, France.
  6. Anil Mehta: Division of Medical Sciences, Centre for CVS and Lung Biology, Ninewells Hospital Medical School, DD19SY, Dundee, UK.
  7. Krisztina Takács-Vellai: Department of Biological Anthropology, Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117, Budapest, Hungary. krisztina.takacs@ttk.elte.hu.

Abstract

Metastasis suppressor genes (MSGs) inhibit different biological processes during metastatic progression without globally influencing development of the primary tumor. The first MSG, NM23 (non-metastatic clone 23, isoform H1) or now called NME1 (stands for non-metastatic) was identified some decades ago. Since then, ten human NM23 paralogs forming two groups have been discovered. Group I NM23 genes encode enzymes with evolutionarily highly conserved nucleoside diphosphate kinase (NDPK) activity. In this review we summarize how results from NDPKs in model organisms converged on human NM23 studies. Next, we examine the role of NM23-H1 and its homologs within the metastatic cascade, e.g. cell migration and invasion, proliferation and apoptosis. NM23-H1 homologs are well known inhibitors of cell migration. Drosophila studies revealed that AWD, the fly counterpart of NM23-H1 is a negative regulator of cell motility by modulating endocytosis of chemotactic receptors on the surface of migrating cells in cooperation with Shibire/Dynamin; this mechanism has been recently confirmed by human studies. NM23-H1 inhibits proliferation of tumor cells by phosphorylating the MAPK scaffold, kinase suppressor of Ras (KSR), resulting in suppression of MAPK signalling. This mechanism was also observed with the C. elegans homolog, NDK-1, albeit with an inverse effect on MAPK activation. Both NM23-H1 and NDK-1 promote apoptotic cell death. In addition, NDK-1, NM23-H1 and their mouse counterpart NM23-M1 were shown to promote phagocytosis in an evolutionarily conserved manner. In summary, inhibition of cell migration and proliferation, alongside actions in apoptosis and phagocytosis are all mechanisms through which NM23-H1 acts against metastatic progression.

Keywords

References

  1. Cancer Res. 2013 Oct 1;73(19):5949-62 [PMID: 23940300]
  2. Cell. 2011 Mar 4;144(5):646-74 [PMID: 21376230]
  3. Br J Cancer. 1994 Dec;70(6):1224-8 [PMID: 7981081]
  4. Genetics. 1956 Jan;41(1):118-23 [PMID: 17247604]
  5. J Biol Chem. 2002 Aug 30;277(35):32389-99 [PMID: 12105213]
  6. Dev Biol. 1988 Sep;129(1):159-68 [PMID: 3137111]
  7. J Bioenerg Biomembr. 2003 Feb;35(1):19-30 [PMID: 12848338]
  8. Nat Rev Cancer. 2007 Nov;7(11):834-46 [PMID: 17957189]
  9. Br J Haematol. 2003 Nov;123(4):621-30 [PMID: 14616965]
  10. Oncogene. 2014 Sep 4;33(36):4508-4520 [PMID: 24096484]
  11. Cancer Metastasis Rev. 2012 Dec;31(3-4):593-603 [PMID: 22706779]
  12. Curr Biol. 2003 Aug 19;13(16):1356-64 [PMID: 12932319]
  13. Nucleic Acids Res. 2009 Jan;37(1):172-83 [PMID: 19033359]
  14. Vet Pathol. 2010 Jul;47(4):703-12 [PMID: 20442420]
  15. Gene. 2002 Aug 21;296(1-2):87-97 [PMID: 12383506]
  16. Science. 2014 Jun 27;344(6191):1510-5 [PMID: 24970086]
  17. Lab Invest. 2018 Feb;98(2):233-247 [PMID: 29058706]
  18. Cancer Res. 2019 Sep 15;79(18):4689-4702 [PMID: 31311812]
  19. Mol Cell. 2001 Nov;8(5):983-93 [PMID: 11741534]
  20. EMBO Rep. 2008 Aug;9(8):717-20 [PMID: 18670440]
  21. Development. 2008 Jun;135(12):2055-64 [PMID: 18480161]
  22. Nature. 2004 Nov 18;432(7015):307-15 [PMID: 15549092]
  23. Sci Signal. 2009 Mar 10;2(61):pe13 [PMID: 19278958]
  24. J Biol Chem. 2002 Jan 11;277(2):1560-7 [PMID: 11694515]
  25. Mol Cell Biol. 2004 Nov;24(21):9630-45 [PMID: 15485929]
  26. Cancer Res. 1995 May 1;55(9):1977-81 [PMID: 7728768]
  27. Oncogene. 2007 May 14;26(22):3113-21 [PMID: 17496910]
  28. Mol Cell. 2006 Jul 7;23(1):133-42 [PMID: 16818237]
  29. Int J Cancer. 2011 Jan 1;128(1):40-50 [PMID: 20209495]
  30. Lab Invest. 2018 Feb;98(2):219-227 [PMID: 28991262]
  31. Cell Death Differ. 2013 Jan;20(1):97-107 [PMID: 22935616]
  32. Science. 1993 Jul 23;261(5120):478-80 [PMID: 8392752]
  33. J Biol Chem. 2010 Dec 10;285(50):38765-71 [PMID: 20884616]
  34. Lab Invest. 2018 Feb;98(2):182-189 [PMID: 28920944]
  35. J Bioenerg Biomembr. 2006 Aug;38(3-4):169-75 [PMID: 16944304]
  36. Cell. 1990 Nov 30;63(5):933-40 [PMID: 2175255]
  37. Int J Biochem Cell Biol. 2008;40(5):874-91 [PMID: 18280770]
  38. Cell Death Differ. 2019 Dec;26(12):2637-2651 [PMID: 30952991]
  39. J Natl Cancer Inst. 1988 Apr 6;80(3):200-4 [PMID: 3346912]
  40. Cancer Res. 2007 Aug 1;67(15):7238-46 [PMID: 17671192]
  41. Oncogene. 2007 Feb 26;26(9):1324-37 [PMID: 17322918]
  42. Cell Mol Life Sci. 2015 Apr;72(8):1447-62 [PMID: 25537302]
  43. Neural Dev. 2009 Jan 05;4:1 [PMID: 19123928]
  44. Int J Cancer. 2008 Aug 1;123(3):500-10 [PMID: 18470881]
  45. Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):17396-401 [PMID: 21969579]
  46. Genes Dev. 1988 Oct;2(10):1333-43 [PMID: 2849580]
  47. Nat Rev Immunol. 2014 Mar;14(3):166-80 [PMID: 24481336]
  48. Development. 2003 Aug;130(15):3469-78 [PMID: 12810594]
  49. Proc Natl Acad Sci U S A. 2001 Apr 10;98(8):4385-90 [PMID: 11274357]
  50. Dev Dyn. 2009 Mar;238(3):775-87 [PMID: 19235734]
  51. Curr Biol. 2002 Mar 5;12(5):427-33 [PMID: 11882296]
  52. Nat Rev Mol Cell Biol. 2008 Jul;9(7):517-31 [PMID: 18568040]
  53. Nature. 1989 Nov 9;342(6246):177-80 [PMID: 2509941]
  54. Cell. 2001 Oct 5;107(1):17-26 [PMID: 11595182]
  55. J Natl Cancer Inst. 1994 Dec 21;86(24):1838-44 [PMID: 7990158]
  56. Gastroenterology. 2012 Apr;142(4):886-896.e9 [PMID: 22240480]
  57. FEBS J. 2013 Sep;280(18):4417-29 [PMID: 23895508]
  58. Int J Cancer. 2004 Jan 10;108(2):207-11 [PMID: 14639604]
  59. Exp Cell Res. 2013 Mar 10;319(5):740-9 [PMID: 23137649]
  60. Cancer Res. 2001 Mar 1;61(5):2320-7 [PMID: 11280805]
  61. Nat Rev Mol Cell Biol. 2012 Oct;13(10):631-45 [PMID: 23000794]
  62. Dev Biol. 1996 Aug 1;177(2):544-57 [PMID: 8812147]
  63. Nat Rev Mol Cell Biol. 2012 Jan 11;13(2):75-88 [PMID: 22233676]
  64. J Cell Sci. 2001 May;114(Pt 9):1609-12 [PMID: 11309192]
  65. Lab Invest. 2018 Feb;98(2):164-174 [PMID: 29451272]
  66. FEBS J. 2010 Nov;277(21):4376-82 [PMID: 20883493]
  67. APMIS. 2008 Jul-Aug;116(7-8):586-601 [PMID: 18834404]
  68. J Bioenerg Biomembr. 2000 Jun;32(3):301-8 [PMID: 11768314]
  69. Neuron. 2001 Apr;30(1):197-210 [PMID: 11343655]
  70. Genetics. 2000 Nov;156(3):1097-116 [PMID: 11063687]
  71. Leuk Res. 2018 Mar;66:39-48 [PMID: 29407582]
  72. Clin Cancer Res. 2012 Apr 1;18(7):2012-23 [PMID: 22328561]
  73. Cancer Res. 2010 Oct 1;70(19):7710-22 [PMID: 20841469]
  74. Mol Cell Biol. 2008 Mar;28(6):1964-73 [PMID: 18212059]
  75. Mol Cell Biol. 2005 Feb;25(4):1379-88 [PMID: 15684389]
  76. Int Rev Cell Mol Biol. 2012;293:269-309 [PMID: 22251564]
  77. Nat Med. 1995 Feb;1(2):149-53 [PMID: 7585012]
  78. Oncogene. 2008 Mar 20;27(13):1853-64 [PMID: 17906697]
  79. Cancer Cell. 2004 Feb;5(2):137-49 [PMID: 14998490]
  80. WormBook. 2013 Jul 11;:1-38 [PMID: 23908058]
  81. Genes Dev. 2003 Nov 15;17(22):2812-24 [PMID: 14630942]
  82. Lab Invest. 2018 Feb;98(2):198-210 [PMID: 28967874]
  83. Development. 2013 Aug;140(16):3486-95 [PMID: 23900546]
  84. Development. 2005 Aug;132(15):3483-92 [PMID: 16000386]
  85. J Natl Cancer Inst. 2005 Jun 1;97(11):836-45 [PMID: 15928304]
  86. PLoS One. 2011 Apr 07;6(4):e18645 [PMID: 21490937]
  87. Cancer Res. 1992 Nov 1;52(21):6088-91 [PMID: 1356624]
  88. Cancer Res. 2003 Apr 1;63(7):1684-95 [PMID: 12670923]
  89. Mol Cell Biochem. 2009 Sep;329(1-2):51-62 [PMID: 19387795]
  90. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):489-98 [PMID: 21553004]
  91. Nature. 2002 Dec 19-26;420(6917):860-7 [PMID: 12490959]
  92. Genes Dev. 2002 Feb 15;16(4):427-38 [PMID: 11850406]
  93. PLoS Genet. 2011 Aug;7(8):e1002238 [PMID: 21901106]
  94. Nature. 1994 Aug 4;370(6488):335-6 [PMID: 8047138]
  95. Mol Cell Biol. 2015 Mar;35(6):1001-13 [PMID: 25582197]
  96. Mol Cell. 2006 Dec 8;24(5):665-675 [PMID: 17157250]
  97. J Clin Pathol. 2004 Dec;57(12):1312-8 [PMID: 15563674]
  98. Lab Invest. 2018 Mar;98(3):327-338 [PMID: 29058705]
  99. Vet Pathol. 2010 Jan;47(1):120-31 [PMID: 20080492]
  100. Cancer Lett. 2009 Mar 18;275(2):221-6 [PMID: 19022560]
  101. Oncogene. 1993 Sep;8(9):2325-33 [PMID: 8395676]
  102. J Natl Cancer Inst. 2012 Sep 5;104(17):1306-19 [PMID: 22911670]
  103. Biomed Environ Sci. 2010 Aug;23(4):267-72 [PMID: 20934113]
  104. Curr Opin Cell Biol. 2010 Oct;22(5):633-9 [PMID: 20739171]
  105. Mol Oncol. 2012 Apr;6(2):111-27 [PMID: 22360993]
  106. Oncotarget. 2017 Dec 31;9(12):10185-10202 [PMID: 29535799]
  107. Cell. 2003 Mar 7;112(5):659-72 [PMID: 12628186]
  108. WormBook. 2005 Jun 25;:1-28 [PMID: 18050418]
  109. BMC Evol Biol. 2009 Oct 23;9:256 [PMID: 19852809]
  110. J Natl Cancer Inst. 1990 Jul 18;82(14):1199-202 [PMID: 2163458]
  111. J Cancer Res Clin Oncol. 2002 Apr;128(4):189-96 [PMID: 11935309]
  112. PLoS One. 2011;6(10):e26024 [PMID: 21991393]
  113. Mol Cell Biochem. 2009 Sep;329(1-2):17-33 [PMID: 19421718]
  114. Int J Cancer. 1996 Oct 21;69(5):415-9 [PMID: 8900377]
  115. PLoS One. 2014 Mar 21;9(3):e92687 [PMID: 24658123]
  116. Int J Surg. 2018 Dec;60:257-265 [PMID: 30389538]
  117. Naunyn Schmiedebergs Arch Pharmacol. 2011 Oct;384(4-5):351-62 [PMID: 21713383]
  118. Int J Cancer. 1995 Jan 17;60(2):204-10 [PMID: 7829217]
  119. Sci Signal. 2020 Jan 07;13(613): [PMID: 31911433]
  120. J Biol Chem. 2008 Sep 19;283(38):26198-207 [PMID: 18635542]
  121. Cancer Res. 1989 Sep 15;49(18):5185-90 [PMID: 2475243]
  122. FASEB J. 2019 Oct;33(10):11606-11614 [PMID: 31242766]
  123. Vet Pathol. 2012 Jan;49(1):166-81 [PMID: 21746835]

Grants

  1. FK-128404/Hungarian Scientific Research Fund
  2. K115587/Hungarian Scientific Research Fund
  3. ED_17-1-2017-0009/Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

MeSH Term

Animals
Apoptosis
Cell Movement
Cell Proliferation
Humans
NM23 Nucleoside Diphosphate Kinases
Neoplasm Invasiveness
Neoplasm Metastasis
Nucleoside-Diphosphate Kinase
Phagocytosis

Chemicals

NM23 Nucleoside Diphosphate Kinases
Nucleoside-Diphosphate Kinase

Word Cloud

Created with Highcharts 10.0.0NM23-H1NM23cellmigrationMetastasismetastatichumanstudiesproliferationMAPKNDK-1suppressorgenesprogressiontumornon-metastaticevolutionarilyconservedkinaseNDPKhomologsapoptosiscounterpartcellsmechanismpromotephagocytosisMSGsinhibitdifferentbiologicalprocesseswithoutgloballyinfluencingdevelopmentprimaryfirstMSGclone23isoformH1nowcalledNME1standsidentifieddecadesagoSincetenparalogsformingtwogroupsdiscoveredGroupencodeenzymeshighlynucleosidediphosphateactivityreviewsummarizeresultsNDPKsmodelorganismsconvergedNextexaminerolewithincascadeeginvasionwellknowninhibitorsDrosophilarevealedAWDflynegativeregulatormotilitymodulatingendocytosischemotacticreceptorssurfacemigratingcooperationShibire/DynaminrecentlyconfirmedinhibitsphosphorylatingscaffoldRasKSRresultingsuppressionsignallingalsoobservedCeleganshomologalbeitinverseeffectactivationapoptoticdeathadditionmouseNM23-M1shownmannersummaryinhibitionalongsideactionsmechanismsactsFunctionNM23-H1/NME1HomologsMajorProcessesLinkedApoptosisCellCftrDynamininhibitorPhagocytosisPhosphohistidine

Similar Articles

Cited By