Sarah van Veen, Shaun Martin, Chris Van den Haute, Veronick Benoy, Joseph Lyons, Roeland Vanhoutte, Jan Pascal Kahler, Jean-Paul Decuypere, Géraldine Gelders, Eric Lambie, Jeffrey Zielich, Johannes V Swinnen, Wim Annaert, Patrizia Agostinis, Bart Ghesquière, Steven Verhelst, Veerle Baekelandt, Jan Eggermont, Peter Vangheluwe
Author Information
Sarah van Veen: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Shaun Martin: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Chris Van den Haute: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Veronick Benoy: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Joseph Lyons: Department of Molecular Biology and Genetics - DANDRITE, Aarhus, Denmark.
Roeland Vanhoutte: Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Jan Pascal Kahler: Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Jean-Paul Decuypere: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Géraldine Gelders: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Eric Lambie: Cell and Developmental Biology, Department Biology II, Ludwig-Maximilians-Universität Munich, Munich, Germany.
Jeffrey Zielich: Cell and Developmental Biology, Department Biology II, Ludwig-Maximilians-Universität Munich, Munich, Germany.
Johannes V Swinnen: Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
Wim Annaert: Laboratory of Membrane Trafficking (VIB-KU Leuven Center for Brain and Disease Research), Department of Neurosciences, KU Leuven, Leuven, Belgium.
Patrizia Agostinis: Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Bart Ghesquière: Metabolomics Expertise Center (VIB-KU Leuven Center for Cancer Biology), Department of Oncology, KU Leuven, Leuven, Belgium.
Steven Verhelst: Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Veerle Baekelandt: Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium.
Jan Eggermont: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Peter Vangheluwe: Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium. peter.vangheluwe@kuleuven.be.
ATP13A2 (PARK9) is a late endolysosomal transporter that is genetically implicated in a spectrum of neurodegenerative disorders, including Kufor-Rakeb syndrome-a parkinsonism with dementia-and early-onset Parkinson's disease. ATP13A2 offers protection against genetic and environmental risk factors of Parkinson's disease, whereas loss of ATP13A2 compromises lysosomes. However, the transport function of ATP13A2 in lysosomes remains unclear. Here we establish ATP13A2 as a lysosomal polyamine exporter that shows the highest affinity for spermine among the Polyamines examined. Polyamines stimulate the activity of purified ATP13A2, whereas ATP13A2 mutants that are implicated in disease are functionally impaired to a degree that correlates with the disease phenotype. ATP13A2 promotes the cellular uptake of Polyamines by endocytosis and transports them into the cytosol, highlighting a role for endolysosomes in the uptake of Polyamines into cells. At high concentrations Polyamines induce cell toxicity, which is exacerbated by ATP13A2 loss due to lysosomal dysfunction, lysosomal rupture and cathepsin B activation. This phenotype is recapitulated in neurons and nematodes with impaired expression of ATP13A2 or its orthologues. We present defective lysosomal polyamine export as a mechanism for lysosome-dependent cell death that may be implicated in neurodegeneration, and shed light on the molecular identity of the mammalian polyamine transport system.
References
Ramirez, A. et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat. Genet. 38, 1184–1191 (2006).
[PMID: 16964263]
Di Fonzo, A. et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 68, 1557–1562 (2007).
[PMID: 17485642]
Dehay, B. et al. Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc. Natl Acad. Sci. USA 109, 9611–9616 (2012).
[PMID: 22647602]
Palmgren, M. G. & Nissen, P. P-type ATPases. Annu. Rev. Biophys. 40, 243–266 (2011).
[PMID: 21351879]
van Veen, S. et al. Cellular function and pathological role of ATP13A2 and related P-type transport ATPases in Parkinson’s disease and other neurological disorders. Front. Mol. Neurosci. 7, 48 (2014).
[PMID: 24904274]
Narayanaswamy, N. et al. A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nat. Methods 16, 95–102 (2019).
[PMID: 30532082]
De La Hera, D. P., Corradi, G. R., Adamo, H. P. & De Tezanos Pinto, F. Parkinson’s disease-associated human P-ATPase ATP13A2 increases spermidine uptake. Biochem. J. 450, 47–53 (2013).
Heinick, A. et al. Caenorhabditis elegans P-type ATPase CATP-5 operates in polyamine transport and is crucial for norspermidine-mediated suppression of RNA interference. FASEB J. 24, 206–217 (2010).
[PMID: 19762559]
Holemans, T. et al. A lipid switch unlocks Parkinson's disease-associated ATP13A2. Proc. Natl Acad. Sci. USA 112, 9040–9045, (2015).
[PMID: 26134396]
Martin, S., Holemans, T. & Vangheluwe, P. Unlocking ATP13A2/PARK9 activity. Cell Cycle 14, 3341–3342 (2015).
[PMID: 26392192]
Martin, S. et al. Protection against mitochondrial and metal toxicity depends on functional lipid binding sites in ATP13A2. Parkinsons Dis. 2016, 9531917 (2016).
[PMID: 27073711]
Sørensen, D. M. et al. Parkinson disease related ATP13A2 evolved early in animal evolution. PLoS ONE 13, e0193228 (2018).
[PMID: 29505581]
Vanhoutte, R., Kahler, J. P., Martin, S., van Veen, S. & Verhelst, S. H. L. Clickable polyamine derivatives as chemical probes for the polyamine transport system. ChemBioChem 19, 907–911 (2018).
[PMID: 29451723]
Demirsoy, S. et al. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function. Hum. Mol. Genet. 26, 1656–1669 (2017).
[PMID: 28334751]
Seglen, P. O. & Gordon, P. B. Effects of lysosomotropic monoamines, diamines, amino alcohols, and other amino compounds on protein degradation and protein synthesis in isolated rat hepatocytes. Mol. Pharmacol. 18, 468–475 (1980).
[PMID: 7464813]
Chatr-aryamontri, A. et al. The BioGRID interaction database: 2017 update. Nucleic Acids Res. 45, D369–D379 (2017).
[PMID: 27980099]
Estrada-Cuzcano, A. et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 140, 287–305 (2017).
[PMID: 28137957]
Pegg, A. E. Functions of polyamines in mammals. J. Biol. Chem. 291, 14904–14912 (2016).
[PMID: 27268251]
Qiao, C. et al. Atp13a2 deficiency aggravates astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation. CNS Neurosci. Ther. 22, 451–460 (2016).
[PMID: 26848562]
Aits, S. & Jäättelä, M. Lysosomal cell death at a glance. J. Cell Sci. 126, 1905–1912 (2013).
[PMID: 23720375]
Bourdenx, M. et al. Nanoparticles restore lysosomal acidification defects: implications for Parkinson and other lysosomal-related diseases. Autophagy 12, 472–483 (2016).
[PMID: 26761717]
Zielich, J. et al. Overlapping expression patterns and functions of three paralogous P5B ATPases in Caenorhabditis elegans. PLoS ONE 13, e0194451 (2018).
[PMID: 29547664]
Belting, M. et al. Glypican-1 is a vehicle for polyamine uptake in mammalian cells: a pivital role for nitrosothiol-derived nitric oxide. J. Biol. Chem. 278, 47181–47189 (2003).
[PMID: 12972423]
Uemura, T., Stringer, D. E., Blohm-Mangone, K. A. & Gerner, E. W. Polyamine transport is mediated by both endocytic and solute carrier transport mechanisms in the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 299, G517–G522 (2010).
[PMID: 20522643]
Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).
[PMID: 22315721]
Ha, H. C. et al. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl Acad. Sci. USA 95, 11140–11145 (1998).
[PMID: 9736703]
Madeo, F., Eisenberg, T., Pietrocola, F. & Kroemer, G. Spermidine in health and disease. Science 359, eaan2788 (2018).
[PMID: 29371440]
Li, C. et al. Spermine synthase deficiency causes lysosomal dysfunction and oxidative stress in models of Snyder–Robinson syndrome. Nat. Commun. 8, 1257 (2017).
[PMID: 29097652]
Lewandowski, N. M. et al. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc. Natl Acad. Sci. USA 107, 16970–16975 (2010).
[PMID: 20837543]
Sørensen, D. M., Buch-Pedersen, M. J. & Palmgren, M. G. Structural divergence between the two subgroups of P5 ATPases. Biochim. Biophys. Acta 1797, 846–855 (2010).
[PMID: 20416272]
Axelsen, K. B. & Palmgren, M. G. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46, 84–101 (1998).
[PMID: 9419228]
Grunewald, A. et al. ATP13A2 mutations impair mitochondrial function in fibroblasts from patients with Kufor-Rakeb syndrome. Neurobiol Aging 33, 1843.e1–1843.e7 (2012).
Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P. & Krainc, D. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity. J. Neurosci. 32, 4240–4246 (2012).
[PMID: 22442086]
Santoro, L. et al. Novel ATP13A2 (PARK9) homozygous mutation in a family with marked phenotype variability. Neurogenetics 12, 33–39 (2011).
[PMID: 20853184]
Funayama, M. et al. Rapid screening of ATP13A2 variant with high-resolution melting analysis. Mov. Disord. 25, 2434–2437 (2010).
[PMID: 20976737]
Lin, C. H. et al. Novel ATP13A2 variant associated with Parkinson disease in Taiwan and Singapore. Neurology 71, 1727–1732 (2008).
[PMID: 19015489]
Mao, X. Y. et al. ATP13A2 G2236A variant is rare in patients with early-onset Parkinson’s disease and familial Parkinson’s disease from mainland China. Parkinsonism Relat. Disord. 16, 235–236 (2010).
[PMID: 20036179]
Sanjana, N. E., Shalem, O. & Zhang, F. Improved vectors and genome-wide libraries for CRISPR screening. Nat. Methods 11, 783–784 (2014).
[PMID: 25075903]
Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).
[PMID: 26735016]
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016).
[PMID: 26780180]
Covy, J. P., Waxman, E. A. & Giasson, B. I. Characterization of cellular protective effects of ATP13A2/PARK9 expression and alterations resulting from pathogenic mutants. J. Neurosci. Res. 90, 2306–2316 (2012).
[PMID: 22847264]
Gitler, A. D. et al. α-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nat. Genet. 41, 308–315 (2009).
[PMID: 19182805]
Kong, S. M. et al. Parkinson’s disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-synuclein externalization via exosomes. Hum. Mol. Genet. 23, 2816–2833 (2014).
[PMID: 24603074]
Lambie, E. J., Tieu, P. J., Lebedeva, N., Church, D. L. & Conradt, B. CATP-6, a C. elegans ortholog of ATP13A2 PARK9, positively regulates GEM-1, an SLC16A transporter. PLoS ONE 8, e77202 (2013).
[PMID: 24130856]
Tsunemi, T. et al. Increased lysosomal exocytosis induced by lysosomal Ca channel agonists protects human dopaminergic neurons from α-synuclein toxicity. J. Neurosci. 39, 5760–5772 (2019).
[PMID: 31097622]
Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 350, 87–96 (2002).
[PMID: 12073338]
Azouaoui, H. et al. A high-yield co-expression system for the purification of an intact Drs2p-Cdc50p lipid flippase complex, critically dependent on and stabilized by phosphatidylinositol-4-phosphate. PLoS ONE 9, e112176 (2014).
[PMID: 25393116]
Jidenko, M., Lenoir, G., Fuentes, J. M., le Maire, M. & Jaxel, C. Expression in yeast and purification of a membrane protein, SERCA1a, using a biotinylated acceptor domain. Protein Expr. Purif. 48, 32–42 (2006).
[PMID: 16603381]
Papadopulos, A. et al. Flippase activity detected with unlabeled lipids by shape changes of giant unilamellar vesicles. J. Biol. Chem. 282, 15559–15568 (2007).
[PMID: 17369612]
Byun, J. A. et al. Analysis of polyamines as carbamoyl derivatives in urine and serum by liquid chromatography–tandem mass spectrometry. Biomed. Chromatogr. 22, 73–80 (2008).
[PMID: 17668437]
Stroikin, Y., Mild, H., Johansson, U., Roberg, K. & Ollinger, K. Lysosome-targeted stress reveals increased stability of lipofuscin-containing lysosomes. Age 30, 31–42 (2008).
[PMID: 19424871]
Nilsson, C., Kagedal, K., Johansson, U. & Ollinger, K. Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. Methods Cell. Sci. 25, 185–194 (2003).
[PMID: 15801164]
Osório, L. et al. Viral vectors expressing a single microRNA-based short-hairpin RNA result in potent gene silencing in vitro and in vivo. J. Biotechnol. 169, 71–81 (2014).
[PMID: 24252659]
Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).
[PMID: 4366476]
Casadaban, M. J., Martinez-Arias, A., Shapira, S. K. & Chou, J. β-galactosidase gene fusions for analyzing gene expression in Escherichia coli and yeast. Methods Enzymol. 100, 293–308 (1983).
[PMID: 6312261]
The C. elegans Deletion Mutant Consortium. Large-scale screening for targeted knockouts in the Caenorhabditis elegans genome. G3 2, 1415–1425 (2012).
Mello, C. C., Kramer, J. M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).
[PMID: 1935914]
Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).
[PMID: 20360767]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
[PMID: 18215316]
Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).
[PMID: 24162465]