Scaling-up biodiversity-ecosystem functioning research.

Andrew Gonzalez, Rachel M Germain, Diane S Srivastava, Elise Filotas, Laura E Dee, Dominique Gravel, Patrick L Thompson, Forest Isbell, Shaopeng Wang, Sonia Kéfi, Jose Montoya, Yuval R Zelnik, Michel Loreau
Author Information
  1. Andrew Gonzalez: Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, H3A 1B1, Canada. ORCID
  2. Rachel M Germain: Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada.
  3. Diane S Srivastava: Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada. ORCID
  4. Elise Filotas: Center for Forest Research, Département Science et Technologie, Université du Québec, 5800 Saint-Denis, Téluq, Montreal, H2S 3L5, Canada.
  5. Laura E Dee: Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, 80309, USA. ORCID
  6. Dominique Gravel: Département de biologie, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, J1K 2R1, Canada.
  7. Patrick L Thompson: Department of Zoology and Biodiversity Research Centre, University of British Columbia, Vancouver, V6T 1Z4, Canada. ORCID
  8. Forest Isbell: Department of Ecology, Evolution, and Behavior, University of Minnesota, 1479 Gortner Avenue, St. Paul, MN, 55108, USA. ORCID
  9. Shaopeng Wang: Institute of Ecology, College of Urban and Environmental Science, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, 100871, Beijing, China. ORCID
  10. Sonia Kéfi: ISEM, CNRS, Univ. Montpellier, IRD, EPHE, Montpellier, France. ORCID
  11. Jose Montoya: Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France. ORCID
  12. Yuval R Zelnik: Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France.
  13. Michel Loreau: Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200, Moulis, France.

Abstract

A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale-dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross-scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.

Keywords

References

  1. PLoS Biol. 2014 Apr 22;12(4):e1001841 [PMID: 24756001]
  2. Nat Ecol Evol. 2017 Mar 01;1(4):63 [PMID: 28812675]
  3. Trends Ecol Evol. 2014 Jul;29(7):398-405 [PMID: 24932849]
  4. Ecol Lett. 2007 Aug;10(8):680-9 [PMID: 17594423]
  5. Nat Commun. 2014 Jul 01;5:4299 [PMID: 24980772]
  6. Ecol Lett. 2008 Jun;11(6):609-23 [PMID: 18400018]
  7. Ecology. 2007 Aug;88(8):2058-71 [PMID: 17824437]
  8. Nature. 2019 Feb;566(7744):373-377 [PMID: 30700912]
  9. Ecol Lett. 2009 Oct;12(10):1016-28 [PMID: 19702635]
  10. Ecol Lett. 2013 Jul;16(7):853-61 [PMID: 23692591]
  11. Nature. 2018 May;557(7707):710-713 [PMID: 29795345]
  12. Nature. 2015 Apr 2;520(7545):45-50 [PMID: 25832402]
  13. Ecol Lett. 2018 Oct;21(10):1457-1466 [PMID: 30019373]
  14. Proc Natl Acad Sci U S A. 2017 Apr 25;114(17):4447-4452 [PMID: 28416694]
  15. Nature. 2007 Sep 13;449(7159):218-22 [PMID: 17851525]
  16. Ecol Lett. 2006 Oct;9(10):1146-56 [PMID: 16972878]
  17. Nat Ecol Evol. 2018 Jun;2(6):976-982 [PMID: 29760440]
  18. Ecol Lett. 2013 May;16 Suppl 1:106-15 [PMID: 23346947]
  19. Nat Ecol Evol. 2017 Mar 23;1(4):101 [PMID: 28812678]
  20. Ecology. 2012 Apr;93(4):891-901 [PMID: 22690639]
  21. Nature. 2011 Apr 7;472(7341):86-9 [PMID: 21475199]
  22. Nature. 2017 May 31;546(7656):65-72 [PMID: 28569811]
  23. Phys Rev Lett. 2009 Mar 6;102(9):098701 [PMID: 19392568]
  24. Trends Ecol Evol. 2009 Oct;24(10):564-71 [PMID: 19665254]
  25. Nat Commun. 2017 Jan 09;8:13928 [PMID: 28067266]
  26. Proc Biol Sci. 2016 Dec 14;283(1844): [PMID: 27928044]
  27. PLoS Biol. 2016 Aug 03;14(8):e1002527 [PMID: 27487303]
  28. J Exp Biol. 2012 Mar 15;215(Pt 6):962-7 [PMID: 22357589]
  29. Ecology. 2011 May;92(5):1104-14 [PMID: 21661571]
  30. Nat Ecol Evol. 2017 Nov;1(11):1639-1642 [PMID: 28970481]
  31. Sci Rep. 2017 Jan 17;7:39102 [PMID: 28094794]
  32. Ecology. 2019 Mar;100(3):e02616 [PMID: 30636279]
  33. Nature. 2011 Jan 6;469(7328):89-92 [PMID: 21131946]
  34. Ecol Lett. 2017 Aug;20(8):935-946 [PMID: 28656624]
  35. Sci Rep. 2016 Oct 17;6:34170 [PMID: 27748359]
  36. Ecol Lett. 2019 Jul;22(7):1152-1162 [PMID: 31095883]
  37. Proc Natl Acad Sci U S A. 2008 Apr 1;105(13):5134-8 [PMID: 18375765]
  38. Nature. 2008 Jul 17;454(7202):331-4 [PMID: 18633416]
  39. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13697-702 [PMID: 25225392]
  40. Nature. 2017 Sep 14;549(7671):261-264 [PMID: 28869964]
  41. Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12202-12207 [PMID: 29087943]
  42. PLoS One. 2016 Nov 16;11(11):e0165042 [PMID: 27851740]
  43. Science. 2018 Feb 16;359(6377):791-793 [PMID: 29449491]
  44. Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8248-53 [PMID: 27382163]
  45. Science. 2016 Oct 14;354(6309): [PMID: 27738143]
  46. Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10219-22 [PMID: 23733963]
  47. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13690-6 [PMID: 25225414]
  48. Ecology. 2019 Jul;100(7):e02719 [PMID: 31081945]
  49. Ecol Evol. 2016 Mar 16;6(8):2579-93 [PMID: 27066246]
  50. Am Nat. 2019 May;193(5):738-747 [PMID: 31002568]
  51. Science. 2001 Oct 26;294(5543):804-8 [PMID: 11679658]
  52. Am J Bot. 2011 Mar;98(3):572-92 [PMID: 21613148]
  53. Science. 2014 Apr 4;344(6179):1242552 [PMID: 24700862]
  54. Nat Commun. 2014 Oct 28;5:5351 [PMID: 25350947]
  55. Proc Biol Sci. 2018 May 30;285(1879): [PMID: 29794050]
  56. Ecology. 2016 Oct;97(10):2867-2879 [PMID: 27859122]
  57. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10394-7 [PMID: 22689971]
  58. Glob Chang Biol. 2019 Mar;25(3):811-826 [PMID: 30629311]
  59. Proc Biol Sci. 2014 Aug 7;281(1788):20140633 [PMID: 24966312]
  60. Nature. 2004 Mar 11;428(6979):167-71 [PMID: 15014497]
  61. Ecology. 2016 Aug;97(8):2136-2146 [PMID: 27859186]
  62. Proc Natl Acad Sci U S A. 2018 Aug 14;115(33):8400-8405 [PMID: 30061405]
  63. Proc Natl Acad Sci U S A. 2018 Apr 10;115(15):E3454-E3462 [PMID: 29555733]
  64. Ecol Lett. 2014 Sep;17(9):1158-67 [PMID: 24986005]
  65. Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2617-22 [PMID: 25624499]
  66. Nat Ecol Evol. 2017 Aug;1(8):1066-1073 [PMID: 29046584]
  67. Nature. 2010 Jun 3;465(7298):609-12 [PMID: 20520713]
  68. Science. 2012 May 4;336(6081):589-92 [PMID: 22556253]
  69. Ecology. 2011 Jan;92(1):228-39 [PMID: 21560693]
  70. Nat Ecol Evol. 2018 May;2(5):782-790 [PMID: 29662224]
  71. Am Nat. 2008 Aug;172(2):E48-66 [PMID: 18598188]
  72. J R Soc Interface. 2013 Nov 27;11(91):20130585 [PMID: 24284892]
  73. Nature. 2016 Jan 21;529(7586):390-3 [PMID: 26760203]
  74. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1463-8 [PMID: 9990046]
  75. Nat Commun. 2015 Mar 23;6:6657 [PMID: 25799523]
  76. Am Nat. 2007 Oct;170(4):636-42 [PMID: 17891741]
  77. Ecol Lett. 2017 Nov;20(11):1414-1426 [PMID: 28925074]
  78. Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14949-54 [PMID: 14638942]
  79. Nature. 2006 Jun 29;441(7097):1139-43 [PMID: 16810254]
  80. Nat Commun. 2012;3:1105 [PMID: 23033081]
  81. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5925-30 [PMID: 17379667]
  82. Proc Natl Acad Sci U S A. 2017 Sep 19;114(38):10160-10165 [PMID: 28874547]
  83. Proc Biol Sci. 2014 Jan 08;281(1777):20132094 [PMID: 24403323]
  84. Ecol Lett. 2014 Feb;17(2):175-84 [PMID: 24304725]
  85. Ecol Lett. 2017 Jul;20(7):801-814 [PMID: 28547786]
  86. Proc Natl Acad Sci U S A. 2016 Jan 19;113(3):662-7 [PMID: 26729860]
  87. Nature. 2017 Jan 18;541(7637):398-401 [PMID: 28102267]
  88. Ecol Lett. 2013 May;16(5):617-25 [PMID: 23438189]
  89. Ecol Lett. 2018 Jan;21(1):9-20 [PMID: 29057554]
  90. Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694): [PMID: 27114580]
  91. Am Nat. 2007 Aug;170(2):207-20 [PMID: 17874372]
  92. Glob Ecol Biogeogr. 2018 Apr;27(4):439-449 [PMID: 29651225]
  93. Sci Adv. 2015 Mar 20;1(2):e1500052 [PMID: 26601154]
  94. Nat Ecol Evol. 2017 Sep;1(9):1263-1270 [PMID: 29046560]
  95. Nat Commun. 2016 Aug 24;7:12457 [PMID: 27555100]
  96. Nature. 2003 Jun 5;423(6940):639-42 [PMID: 12789338]
  97. Ecol Lett. 2010 May;13(5):543-52 [PMID: 20236160]
  98. Sci Adv. 2017 Feb 08;3(2):e1601475 [PMID: 28246634]
  99. Ecology. 2006 Nov;87(11):2895-904 [PMID: 17168033]
  100. Nat Commun. 2017 May 19;8:15211 [PMID: 28524860]
  101. Ecol Lett. 2013 Oct;16(10):1221-33 [PMID: 23931035]
  102. J Theor Biol. 2015 Sep 7;380:426-35 [PMID: 26100182]
  103. Ecol Lett. 2007 Jun;10(6):522-38 [PMID: 17498151]
  104. Ecol Lett. 2019 Nov;22(11):1828-1837 [PMID: 31392829]
  105. Philos Trans R Soc Lond B Biol Sci. 2004 Mar 29;359(1443):409-20 [PMID: 15212093]
  106. Proc Biol Sci. 2019 Mar 13;286(1898):20182399 [PMID: 30836869]
  107. Nature. 2000 Jun 29;405(6790):1047-9 [PMID: 10890443]
  108. PLoS Comput Biol. 2019 Mar 28;15(3):e1006744 [PMID: 30921328]
  109. J R Soc Interface. 2015 Oct 6;12(111):20150481 [PMID: 26400196]
  110. Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694): [PMID: 27114570]
  111. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12765-70 [PMID: 14569008]
  112. Nat Ecol Evol. 2017 Jun 22;1(7):176 [PMID: 28812589]
  113. Ecol Lett. 2016 May;19(5):510-8 [PMID: 26918536]
  114. Nature. 1999 Aug 5;400(6744):557-60 [PMID: 10448857]
  115. Annu Rev Ecol Evol Syst. 2016 Nov;47:215-237 [PMID: 28239303]
  116. Am Nat. 2004 Apr;163(4):606-15 [PMID: 15122506]
  117. PLoS One. 2010 May 26;5(5):e10834 [PMID: 20520808]
  118. Am Nat. 2010 Feb;175(2):E16-34 [PMID: 20059366]
  119. Proc Natl Acad Sci U S A. 2019 Apr 23;116(17):8419-8424 [PMID: 30948639]
  120. Nature. 2007 Apr 12;446(7137):791-3 [PMID: 17384633]
  121. Glob Chang Biol. 2016 Jun;22(6):2069-80 [PMID: 26810148]
  122. Proc Biol Sci. 2016 Aug 17;283(1836): [PMID: 27534960]
  123. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8998-9002 [PMID: 15184681]
  124. Science. 1999 Nov 5;286(5442):1123-7 [PMID: 10550043]
  125. Trends Ecol Evol. 2010 Mar;25(3):153-60 [PMID: 19879014]
  126. Glob Chang Biol. 2014 Dec;20(12):3600-9 [PMID: 24890749]
  127. Ecol Lett. 2005 May;8(5):513-23 [PMID: 21352455]
  128. Sci Adv. 2019 Mar 06;5(3):eaav6420 [PMID: 30854434]
  129. Nature. 2016 May 11;533(7603):393-6 [PMID: 27193685]
  130. Ecol Lett. 2018 Jun;21(6):763-778 [PMID: 29493062]
  131. Oecologia. 1993 Oct;96(1):114-121 [PMID: 28313761]
  132. Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18123-8 [PMID: 17991772]
  133. Ecology. 2017 Apr;98(4):909-919 [PMID: 27984663]
  134. Trends Ecol Evol. 2018 Jul;33(7):549-564 [PMID: 29807839]
  135. Am Nat. 2005 Oct;166(4):E95-114 [PMID: 16224699]
  136. Nature. 2016 Apr 28;532(7600):465-470 [PMID: 26863193]
  137. Proc Biol Sci. 2018 Jun 13;285(1880): [PMID: 29875295]
  138. PLoS Comput Biol. 2019 Aug 29;15(8):e1007269 [PMID: 31465440]
  139. Ecol Lett. 2011 Mar;14(3):313-23 [PMID: 21272182]
  140. Philos Trans R Soc Lond B Biol Sci. 2016 May 19;371(1694): [PMID: 27114583]

Grants

  1. /NSERC
  2. 666971/National Science Foundation
  3. 726176/National Science Foundation
  4. 666971/National Science Foundation
  5. 12/National Science Foundation
  6. /Killam
  7. /European Research Council
  8. /Horizon 2020

MeSH Term

Biodiversity
Ecology
Ecosystem
Food Chain

Word Cloud

Created with Highcharts 10.0.0BEFscaleecosystemfunctioningscalesrelationshipchangespatialwilldiversitybiodiversitytheorydependencenonlinearslopestabilityenvironmentalturnoverscalingcombinemayresearchecosystemsrichbodyknowledgelinksprimarilyfocusedsmallreviewcurrentidentifysixexpectationsrelationship:12scale-dependentextent3coexistencewithinamongsitesresultpositivelarger4temporalautocorrelationvariabilityaffectsspeciesthus5connectivitymetacommunitiesgeneratesrelationshipsaffectingpopulation synchronylocalregional6foodwebstructuregeneratesuggestdirectionssynthesisapproachesmetaecosystemmetacommunityecologyintegratecross-scalefeedbacksTestsremotesensinggenerationnetworkedexperimentsassesseffectsmultiplealsoshowanthropogeniclandcoveralterNewroleguidepolicylinkinggoalsmanagingScaling-upbiodiversity-ecosystemBetabiologicalheterogeneity

Similar Articles

Cited By