Detection and Quantification of Viable but Non-culturable .

Ruiling Lv, Kaidi Wang, Jinsong Feng, Dustin D Heeney, Donghong Liu, Xiaonan Lu
Author Information
  1. Ruiling Lv: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
  2. Kaidi Wang: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
  3. Jinsong Feng: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
  4. Dustin D Heeney: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.
  5. Donghong Liu: College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.
  6. Xiaonan Lu: Food, Nutrition, and Health Program, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada.

Abstract

can enter a viable but non-culturable (VBNC) state to evade various stresses, and this state is undetectable using traditional microbiological culturing techniques. These VBNC bacterial cells retain metabolism and demonstrate pathogenic potential due to their ability to resuscitate under favorable conditions. Rapid and accurate determination of VBNC is critical to further understand the induction and resuscitation of the dormancy state of this microbe in the agri-food system. Here, we integrated propidium monoazide (PMA) with real-time polymerase chain reaction (qPCR) targeting the gene to detect and quantify in the VBNC state. First, we optimized the concentration of PMA (20 μM) that could significantly inhibit the amplification of dead cells by qPCR with no significant interference on the amplification of viable cell DNA. PMA-qPCR was highly specific to with a limit of detection (LOD) of 2.43 log CFU/ml in pure bacterial culture. A standard curve for cell concentrations was established with the correlation coefficient of 0.9999 at the linear range of 3.43 to 8.43 log CFU/ml. Induction of into the VBNC state by osmotic stress (i.e., 7% NaCl) was rapid (<48 h) and effective (>10% population). The LOD of PMA-qPCR for VBNC exogenously applied to chicken breasts was 3.12 log CFU/g. In conclusion, PMA-qPCR is a rapid, specific, and sensitive method for the detection and quantification of VBNC in poultry products. This technique can give insight into the prevalence of VBNC in the environment and agri-food production system.

Keywords

References

  1. Water Res. 2016 Nov 15;105:291-296 [PMID: 27636152]
  2. J Microbiol Methods. 2006 Nov;67(2):310-20 [PMID: 16753236]
  3. FEMS Microbiol Lett. 2014 Jul;356(1):8-19 [PMID: 24888326]
  4. J Microbiol Methods. 2013 Oct;95(1):32-8 [PMID: 23811205]
  5. 3 Biotech. 2018 Jan;8(1):28 [PMID: 29276663]
  6. Arch Microbiol. 1998 Oct;170(5):319-30 [PMID: 9818351]
  7. Front Microbiol. 2017 Mar 02;8:331 [PMID: 28303130]
  8. J Food Sci. 2018 Jul;83(7):1913-1920 [PMID: 29905952]
  9. Appl Environ Microbiol. 2000 Dec;66(12):5536-9 [PMID: 11097946]
  10. Curr Microbiol. 2008 Apr;56(4):293-7 [PMID: 18180992]
  11. Antonie Van Leeuwenhoek. 2009 Nov;96(4):377-94 [PMID: 19774483]
  12. J AOAC Int. 2009 Jul-Aug;92(4):1136-44 [PMID: 19714982]
  13. Microbiol Immunol. 2012 Apr;56(4):228-37 [PMID: 22256797]
  14. Front Microbiol. 2011 Sep 27;2:200 [PMID: 21991264]
  15. Front Public Health. 2014 Jul 31;2:103 [PMID: 25133139]
  16. Appl Environ Microbiol. 2010 Aug;76(15):5097-104 [PMID: 20562292]
  17. Appl Environ Microbiol. 2012 Feb;78(4):922-32 [PMID: 22139002]
  18. Poult Sci. 2018 May 1;97(5):1706-1711 [PMID: 29471351]
  19. Food Microbiol. 2011 Oct;28(7):1353-8 [PMID: 21839385]
  20. Crit Rev Microbiol. 2015 Feb;41(1):61-76 [PMID: 23848175]
  21. J Microbiol Methods. 2012 Nov;91(2):276-89 [PMID: 22940102]
  22. FEMS Microbiol Lett. 2009 Feb;291(2):137-42 [PMID: 19054073]
  23. J Expo Sci Environ Epidemiol. 2017 Mar;27(2):141-151 [PMID: 26883476]
  24. Microbiology. 1997 May;143 ( Pt 5):1575-81 [PMID: 9168608]
  25. Nat Rev Microbiol. 2018 Sep;16(9):551-565 [PMID: 29892020]
  26. Front Microbiol. 2019 Feb 28;10:368 [PMID: 30873146]
  27. Poult Sci. 2019 Jan 1;98(1):236-243 [PMID: 30165581]
  28. J Microbiol. 2005 Feb;43 Spec No:93-100 [PMID: 15765062]
  29. Microbiol Rev. 1989 Mar;53(1):121-47 [PMID: 2651863]
  30. J Food Prot. 2015 Jul;78(7):1303-11 [PMID: 26197281]
  31. Int J Food Microbiol. 2006 Mar 1;107(1):83-91 [PMID: 16290304]
  32. Front Microbiol. 2013 Jul 09;4:183 [PMID: 23847606]
  33. Appl Environ Microbiol. 1999 Nov;65(11):5154-7 [PMID: 10543837]
  34. J Bacteriol. 2012 Nov;194(22):6116-30 [PMID: 22961853]
  35. Nat Rev Microbiol. 2007 Sep;5(9):665-79 [PMID: 17703225]
  36. J Biol Chem. 1994 Jan 21;269(3):1911-7 [PMID: 7904996]
  37. J Bacteriol. 2018 Sep 24;200(20): [PMID: 30082460]
  38. PLoS One. 2017 Nov 30;12(11):e0188936 [PMID: 29190673]
  39. Microb Pathog. 2019 Jul;132:109-116 [PMID: 31034964]
  40. Int J Food Microbiol. 2010 Jul 31;141 Suppl 1:S75-9 [PMID: 20207040]
  41. Appl Environ Microbiol. 2014 Apr;80(7):2186-92 [PMID: 24487529]
  42. Indoor Air. 2018 Jan;28(1):64-72 [PMID: 28683164]

Word Cloud

Created with Highcharts 10.0.0VBNCstateviablePMA-qPCR43logcannon-culturablebacterialcellsagri-foodsystemPMAqPCRamplificationcellspecificdetectionLODCFU/ml3rapidenterevadevariousstressesundetectableusingtraditionalmicrobiologicalculturingtechniquesretainmetabolismdemonstratepathogenicpotentialdueabilityresuscitatefavorableconditionsRapidaccuratedeterminationcriticalunderstandinductionresuscitationdormancymicrobeintegratedpropidiummonoazidereal-timepolymerasechainreactiontargetinggenedetectquantifyFirstoptimizedconcentration20μMsignificantlyinhibitdeadsignificantinterferenceDNAhighlylimit2pureculturestandardcurveconcentrationsestablishedcorrelationcoefficient09999linearrange8Inductionosmoticstressie7%NaCl<48heffective>10%populationexogenouslyappliedchickenbreasts12CFU/gconclusionsensitivemethodquantificationpoultryproductstechniquegiveinsightprevalenceenvironmentproductionDetectionQuantificationViableNon-culturableCampylobacterfoodsafetyintercalatingagentquantitativePCR

Similar Articles

Cited By (39)