Comparative Transcriptome Analysis Reveals Key Pathways and Hub Genes in Rapeseed During the Early Stage of Infection.

Lixia Li, Ying Long, Hao Li, Xiaoming Wu
Author Information
  1. Lixia Li: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China.
  2. Ying Long: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China.
  3. Hao Li: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China.
  4. Xiaoming Wu: Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Hubei, China.

Abstract

Rapeseed ( L., AACC, 2n = 38) is one of the most important oil crops around the world. With intensified Rapeseed cultivation, the incidence and severity of clubroot infected by Wor. () has increased very fast, which seriously impedes the development of Rapeseed industry. Therefore, it is very important and timely to investigate the mechanisms and genes regulating clubroot resistance (CR) in Rapeseed. In this study, comparative transcriptome analysis was carried out on two Rapeseed accessions of R- (resistant) and S- (susceptible) line. Three thousand one hundred seventy-one and 714 differentially expressed genes (DEGs) were detected in the R- and S-line compared with the control groups, respectively. The results indicated that the CR difference between the R- and S-line had already shown during the early stage of infection and the change of gene expression pattern of R-line exhibited a more intense defensive response than that of S-line. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 2,163 relative-DEGs, identified between the R- and S-line, revealed that genes participated in plant hormone signal transduction, fatty acid metabolism, and glucosinolate biosynthesis were involved in regulation of CR. Further, 12 hub genes were identified from all relative-DEGs with the help of weighted gene co-expression network analysis. Haplotype analysis indicated that the natural variations in the coding regions of some hub genes also made contributed to CR. This study not only provides valuable information for CR molecular mechanisms, but also has applied implications for CR breeding in Rapeseed.

Keywords

References

  1. Plant Cell. 1995 Jul;7(7):1059-1070 [PMID: 12242397]
  2. Front Plant Sci. 2016 Sep 30;7:1483 [PMID: 27746804]
  3. Int J Mol Sci. 2018 Dec 13;19(12): [PMID: 30551560]
  4. Front Microbiol. 2017 Apr 24;8:673 [PMID: 28484434]
  5. Plant Cell. 2004 Jul;16(7):1938-50 [PMID: 15208388]
  6. Plant Physiol. 2001 Apr;125(4):1688-99 [PMID: 11299350]
  7. Annu Rev Phytopathol. 2007;45:399-436 [PMID: 17506648]
  8. Theor Appl Genet. 2008 Feb;116(3):363-72 [PMID: 18040658]
  9. Plant Cell. 2017 Aug;29(8):1907-1926 [PMID: 28733420]
  10. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2379-84 [PMID: 10681464]
  11. BMC Genomics. 2014 Dec 23;15:1166 [PMID: 25532522]
  12. Plant Mol Biol. 2012 Dec;80(6):621-9 [PMID: 23054353]
  13. Funct Plant Biol. 2011 Jun;38(6):462-478 [PMID: 32480901]
  14. DNA Res. 2014 Aug;21(4):355-67 [PMID: 24510440]
  15. Theor Appl Genet. 2008 Jul;117(2):191-202 [PMID: 18427770]
  16. Amino Acids. 2002;22(3):279-95 [PMID: 12083070]
  17. Phytopathology. 2014 Oct;104(10):1078-87 [PMID: 24655290]
  18. J Genet Genomics. 2007 Sep;34(9):765-76 [PMID: 17884686]
  19. Nat Biotechnol. 2010 May;28(5):511-5 [PMID: 20436464]
  20. Sci Rep. 2015 Jun 18;5:11153 [PMID: 26084520]
  21. Mol Plant Microbe Interact. 2006 May;19(5):480-94 [PMID: 16673935]
  22. Clin Sci (Lond). 2005 Mar;108(3):245-53 [PMID: 15563273]
  23. Plant J. 2019 Apr;98(2):329-345 [PMID: 30604574]
  24. Plant Cell Physiol. 2014 Feb;55(2):392-411 [PMID: 24285749]
  25. Plant Physiol. 2012 May;159(1):266-85 [PMID: 22392279]
  26. PLoS One. 2013;8(1):e54745 [PMID: 23382954]
  27. Planta. 2007 Nov;226(6):1343-52 [PMID: 17899172]
  28. Mol Genet Genomics. 2017 Apr;292(2):397-405 [PMID: 28013378]
  29. Trends Plant Sci. 2006 Feb;11(2):89-100 [PMID: 16406306]
  30. DNA Res. 2016 Feb;23(1):29-41 [PMID: 26622061]
  31. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  32. Front Plant Sci. 2016 Dec 23;7:1929 [PMID: 28066482]
  33. FEMS Microbiol Lett. 2006 Nov;264(2):198-204 [PMID: 17064373]
  34. BMC Genomics. 2016 Mar 31;17:272 [PMID: 27036196]
  35. J Biol Chem. 2001 Apr 6;276(14):11078-85 [PMID: 11133994]
  36. Science. 2014 Aug 22;345(6199):950-3 [PMID: 25146293]
  37. BMC Genomics. 2018 Jan 5;19(1):23 [PMID: 29304736]
  38. Bioinformatics. 2005 Oct 1;21(19):3787-93 [PMID: 15817693]
  39. Plant Physiol. 2001 Sep;127(1):108-18 [PMID: 11553739]
  40. Plant J. 2010 Dec;64(6):912-23 [PMID: 21143673]
  41. Mol Plant Pathol. 2012 Feb;13(2):105-13 [PMID: 21726396]
  42. Front Plant Sci. 2016 Jan 05;6:1183 [PMID: 26779217]
  43. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  44. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  45. Mol Plant Pathol. 2010 Jul;11(4):503-12 [PMID: 20618708]
  46. PLoS One. 2014 Jan 31;9(1):e86648 [PMID: 24497962]
  47. Planta. 1999 May;208(3):409-19 [PMID: 10384731]
  48. Nature. 2006 Nov 16;444(7117):323-9 [PMID: 17108957]
  49. Mol Plant Microbe Interact. 2006 Dec;19(12):1431-43 [PMID: 17153927]

Word Cloud

Created with Highcharts 10.0.0genesCRrapeseedanalysisR-S-linehubRapeseedoneimportantclubrootmechanismsstudytranscriptomeindicatedgeneGenesrelative-DEGsidentifiedplanthormoneglucosinolatealsoLAACC2n=38oilcropsaroundworldintensifiedcultivationincidenceseverityinfectedWorincreasedfastseriouslyimpedesdevelopmentindustryThereforetimelyinvestigateregulatingresistancecomparativecarriedtwoaccessionsresistantS-susceptiblelineThreethousandhundredseventy-one714differentiallyexpressedDEGsdetectedcomparedcontrolgroupsrespectivelyresultsdifferencealreadyshownearlystageinfectionchangeexpressionpatternR-lineexhibitedintensedefensiveresponseMoreoverKyotoEncyclopediaGenomesKEGG2163revealedparticipatedsignaltransductionfattyacidmetabolismbiosynthesisinvolvedregulation12helpweightedco-expressionnetworkHaplotypenaturalvariationscodingregionsmadecontributedprovidesvaluableinformationmolecularappliedimplicationsbreedingComparativeTranscriptomeAnalysisRevealsKeyPathwaysHubEarlyStageInfectionBrassicanapusplasmodiophorabrassicae

Similar Articles

Cited By (20)